Selected ATcT [1, 2] enthalpy of formation based on version 1.148 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.140 to include species relevant to a recent study of the role of atmospheric methanediol[4].

Fluoromethylidyne

Formula: CF (g)
CAS RN: 3889-75-6
ATcT ID: 3889-75-6*0
SMILES: [C]F
InChI: InChI=1S/CF/c1-2
InChIKey: ISOSXCFSIDVNNC-UHFFFAOYSA-N
Hills Formula: C1F1

2D Image:

[C]F
Aliases: CF; Fluoromethylidyne; (lambda3-Floranylidyne)methyl; Carbon monofluoride; Carbon fluoride; Methylidyne fluoride
Relative Molecular Mass: 31.00910 ± 0.00080

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
243.19246.79± 0.11kJ/mol

3D Image of CF (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CF (g)

The 20 contributors listed below account only for 53.5% of the provenance of ΔfH° of CF (g).
A total of 209 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
4.82353.1 CH (g) → C (g) H (g) ΔrH°(0 K) = 27954.0 ± 15 cm-1Thorpe 2021a, Thorpe 2021
4.82353.2 CH (g) → C (g) H (g) ΔrH°(0 K) = 27955.6 ± 15 cm-1Thorpe 2021a
4.82356.1 CH (g) → [CH]+ (g) ΔrH°(0 K) = 85828.7 ± 15 cm-1Thorpe 2021a, Thorpe 2021
3.76341.4 CF (g) CH4 (g) → 4 CH (g) CF4 (g) ΔrH°(0 K) = 128.62 ± 0.20 kcal/molKarton 2007b
3.76341.5 CF (g) CH4 (g) → 4 CH (g) CF4 (g) ΔrH°(0 K) = 128.63 ± 0.20 kcal/molKarton 2007b
3.76341.6 CF (g) CH4 (g) → 4 CH (g) CF4 (g) ΔrH°(0 K) = 128.62 ± 0.20 kcal/molKarton 2007b
3.66342.10 CF (g) H2 (g) → 2 CH (g) F2 (g) ΔrH°(0 K) = 699.43 ± 0.56 kJ/molHarding 2008
3.26342.7 CF (g) H2 (g) → 2 CH (g) F2 (g) ΔrH°(0 K) = 699.65 ± 0.60 kJ/molTajti 2004, est unc
2.76335.11 CF (g) → C (g) F (g) ΔrH°(0 K) = 545.41 ± 0.56 kJ/molHarding 2008
2.36342.8 CF (g) H2 (g) → 2 CH (g) F2 (g) ΔrH°(0 K) = 699.79 ± 0.70 kJ/molHarding 2008
2.16342.9 CF (g) H2 (g) → 2 CH (g) F2 (g) ΔrH°(0 K) = 699.72 ± 0.74 kJ/molHarding 2008
1.76335.9 CF (g) → C (g) F (g) ΔrH°(0 K) = 545.72 ± 0.70 kJ/molHarding 2008
1.66341.3 CF (g) CH4 (g) → 4 CH (g) CF4 (g) ΔrH°(0 K) = 128.58 ± 0.30 kcal/molKarton 2007b
1.66342.11 CF (g) H2 (g) → 2 CH (g) F2 (g) ΔrH°(0 K) = 699.99 ± 0.84 kJ/molHarding 2008
1.66342.13 CF (g) H2 (g) → 2 CH (g) F2 (g) ΔrH°(0 K) = 699.63 ± 0.84 kJ/molHarding 2008
1.56335.10 CF (g) → C (g) F (g) ΔrH°(0 K) = 545.47 ± 0.74 kJ/molHarding 2008
1.56335.8 CF (g) → C (g) F (g) ΔrH°(0 K) = 545.50 ± 0.75 kJ/molTajti 2004, est unc
1.32354.12 CH (g) → C (g) H (g) ΔrH°(0 K) = 80.01 ± 0.08 kcal/molFeller 2014, note unc
1.36340.1 CF (g) → C (g) + 1/2 F2 (g) ΔrH°(0 K) = 468.30 ± 0.8 kJ/molCsontos 2010
1.32354.2 CH (g) → C (g) H (g) ΔrH°(0 K) = 334.55 ± 0.34 kJ/molCsaszar 2002

Top 10 species with enthalpies of formation correlated to the ΔfH° of CF (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
67.1 MethylidyneCH (g)[CH]592.994596.328± 0.081kJ/mol13.01864 ±
0.00080
3315-37-5*0
67.1 MethylidyneCH (g, doublet)[CH]592.994596.328± 0.081kJ/mol13.01864 ±
0.00080
3315-37-5*1
36.8 Carbon cationC+ (g)[C+]1797.8561803.455± 0.040kJ/mol12.01015 ±
0.00080
14067-05-1*0
36.8 CarbonC (g, quintuplet)[C]1114.9671120.113± 0.040kJ/mol12.01070 ±
0.00080
7440-44-0*3
36.8 CarbonC (g, singlet)[C]833.335838.481± 0.040kJ/mol12.01070 ±
0.00080
7440-44-0*2
36.8 CarbonC (g, triplet)[C]711.404716.889± 0.040kJ/mol12.01070 ±
0.00080
7440-44-0*1
36.8 CarbonC (g)[C]711.404716.889± 0.040kJ/mol12.01070 ±
0.00080
7440-44-0*0
36.8 Carbon dication[C]+2 (g)[C++]4150.4734155.620± 0.041kJ/mol12.00960 ±
0.00080
16092-61-8*0
36.7 Carbon anionC- (g)[C-]589.627594.774± 0.041kJ/mol12.01125 ±
0.00080
14337-00-9*0
36.4 Methyliumylidene[CH]+ (g)[CH+]1619.7601623.104± 0.041kJ/mol13.01809 ±
0.00080
24361-82-8*0

Most Influential reactions involving CF (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.6936346.1 [CF3]+ (g) CF (g) → CF3 (g) [CF]+ (g) ΔrH°(0 K) = 0.055 ± 0.003 eVAsher 1997
0.3736385.1 CF2CF2 (g) → [CF3]+ (g) CF (g) ΔrH°(0 K) = 13.721 ± 0.005 eVAsher 1997
0.1968242.5 SiF (g, doublet) CH (g) → SiH (g) CF (g) ΔrH°(0 K) = 19.61 ± 0.25 kcal/molKarton 2007b
0.1926336.1 CF (g) → [CF]+ (g) ΔrH°(0 K) = 9.11 ± 0.01 eVDyke 1984a
0.1916343.14 CF2 (g) → CF (g) F (g) ΔrH°(0 K) = 514.41 ± 0.8 kJ/molCsontos 2010
0.1906385.2 CF2CF2 (g) → [CF3]+ (g) CF (g) ΔrH°(0 K) = 13.717 ± 0.007 eVHarvey 2012
0.1516337.9 [CF]- (g) → CF (g) ΔrH°(0 K) = 0.432 ± 0.050 eVRuscic W1RO
0.1516337.10 [CF]- (g) → CF (g) ΔrH°(0 K) = 0.45 ± 0.05 eVXie 1994
0.1496341.6 CF (g) CH4 (g) → 4 CH (g) CF4 (g) ΔrH°(0 K) = 128.62 ± 0.20 kcal/molKarton 2007b
0.1496341.5 CF (g) CH4 (g) → 4 CH (g) CF4 (g) ΔrH°(0 K) = 128.63 ± 0.20 kcal/molKarton 2007b
0.1496341.4 CF (g) CH4 (g) → 4 CH (g) CF4 (g) ΔrH°(0 K) = 128.62 ± 0.20 kcal/molKarton 2007b
0.1276355.2 CHF (g) → CF (g) H (g) ΔrH°(0 K) = 310.60 ± 1.2 kJ/molCsontos 2010
0.1016337.5 [CF]- (g) → CF (g) ΔrH°(0 K) = 0.431 ± 0.061 eVRuscic G4
0.0956333.5 [CF2]+ (g) CF (g) → [CF]+ (g) CF2 (g, singlet) ΔrH°(0 K) = -2.312 ± 0.025 eVRuscic W1RO
0.0826342.10 CF (g) H2 (g) → 2 CH (g) F2 (g) ΔrH°(0 K) = 699.43 ± 0.56 kJ/molHarding 2008
0.0776337.11 [CF]- (g) → CF (g) ΔrH°(0 K) = 0.43 ± 0.07 eVRicca 1999, est unc
0.0726342.7 CF (g) H2 (g) → 2 CH (g) F2 (g) ΔrH°(0 K) = 699.65 ± 0.60 kJ/molTajti 2004, est unc
0.0666341.3 CF (g) CH4 (g) → 4 CH (g) CF4 (g) ΔrH°(0 K) = 128.58 ± 0.30 kcal/molKarton 2007b
0.0626346.2 [CF3]+ (g) CF (g) → CF3 (g) [CF]+ (g) ΔrH°(0 K) = 0.06 ± 0.01 eVWalter 1969
0.0586480.5 CCF (g) → CF (g) C (g) ΔrH°(0 K) = 121.66 ± 1.50 kcal/molRuscic W1RO


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.148 of the Thermochemical Network (2023); available at ATcT.anl.gov
4   T. L. Nguyen, J. Peeters, J.-F. Müller, A. Perera, D. H. Bross, B. Ruscic, and J. F. Stanton,
Methanediol from Cloud-Processed Formaldehyde is Only a Minor Source of Atmospheric Formic Acid
Natl. Acad. Sci. 120, e2304650120/1-8 (2023) [DOI: 10.1073/pnas.2304650120]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.