Selected ATcT [1, 2] enthalpy of formation based on version 1.148 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.140 to include species relevant to a recent study of the role of atmospheric methanediol[4].

Disilene cation

Formula: [SiH2SiH2]+ (g)
CAS RN: 108492-63-3
ATcT ID: 108492-63-3*0
SMILES: [SiH2]=[SiH2+]
InChI: InChI=1S/H4Si2/c1-2/h1-2H2/q+1
InChIKey: HVEZKWVGYFPQFX-UHFFFAOYSA-N
Hills Formula: H4Si2+

2D Image:

[SiH2]=[SiH2+]
Aliases: [SiH2SiH2]+; Disilene cation; Disilene ion (1+); SiH2SiH2+
Relative Molecular Mass: 60.20221 ± 0.00066

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
1069.31060.3± 2.0kJ/mol

3D Image of [SiH2SiH2]+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [SiH2SiH2]+ (g)

The 20 contributors listed below account only for 61.6% of the provenance of ΔfH° of [SiH2SiH2]+ (g).
A total of 69 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
9.68328.5 SiH3SiH3 (g) → [SiH2SiH2]+ (g) H2 (g) ΔrH°(0 K) = 10.128 ± 0.040 eVRuscic W1RO
6.48316.1 SiH2SiH2 (g, singlet) → [SiH2SiH2]+ (g) ΔrH°(0 K) = 8.09 ± 0.03 eVRuscic 1991e
6.18328.1 SiH3SiH3 (g) → [SiH2SiH2]+ (g) H2 (g) ΔrH°(0 K) = 10.10 ± 0.05 eVRuscic 1991d
4.98198.1 Si (cr,l) + 2 F2 (g) → SiF4 (g) ΔrH°(298.15 K) = -385.98 ± 0.19 kcal/molWise 1963, Wise 1963, Wise 1962
3.68316.5 SiH2SiH2 (g, singlet) → [SiH2SiH2]+ (g) ΔrH°(0 K) = 8.061 ± 0.040 eVRuscic W1RO
3.58291.1 SiH3SiH3 (g) → 2 Si (cr,l) + 3 H2 (g) ΔrH°(298.15 K) = -19.1 ± 0.6 (×1.61) kcal/molGunn 1961, est unc
3.28342.5 SiH3SiH3 (g) → [SiH3SiH]+ (g) H2 (g) ΔrH°(0 K) = 10.706 ± 0.040 eVRuscic W1RO
3.08255.1 SiH4 (g) → Si (cr,l) + 2 H2 (g) ΔrH°(298.15 K) = -8.3 ± 0.5 kcal/molGunn 1961, Gurvich TPIS, est unc
2.98328.3 SiH3SiH3 (g) → [SiH2SiH2]+ (g) H2 (g) ΔrH°(0 K) = 10.133 ± 0.073 eVRuscic G4
2.28141.2 Si (cr,l) → Si (g) ΔrG°(1525 K) = 231.1 ± 2.0 kJ/molBatdorf 1959, 3rd Law
1.9546.1 SiF4 (g) + 2 H2O (cr,l) → Si (cr,l) O2 (g) + 4 HF (aq, 5 H2O) ΔrH°(298.15 K) = 899.77 ± 1.20 kJ/molPaulechka 2020, Vorobev 1960, Hummel 1959, Johnson 1987, Good 1964, Good 1964, Johnson 1973
1.78328.2 SiH3SiH3 (g) → [SiH2SiH2]+ (g) H2 (g) ΔrH°(0 K) = 10.131 ± 0.093 eVRuscic G3X
1.78341.4 [SiH3SiH]+ (g) → [SiH2SiH2]+ (g) ΔrH°(0 K) = -13.33 ± 0.90 kcal/molRuscic W1RO
1.68288.8 SiH3SiH3 (g) → 2 Si (g) + 6 H (g) ΔrH°(0 K) = 503.09 ± 0.30 kcal/molKarton 2011, Karton 2007b
1.58328.4 SiH3SiH3 (g) → [SiH2SiH2]+ (g) H2 (g) ΔrH°(0 K) = 10.086 ± 0.099 eVRuscic CBS-n
1.48371.4 Si(HSiH3) (g, triplet) → [Si(HSiH3)]+ (g) ΔrH°(0 K) = 7.288 ± 0.040 eVRuscic W1RO
1.48176.6 SiO2 (cr,l) Si (cr,l) → 2 SiO (g) ΔrG°(1618 K) = 37.94 ± 0.29 kcal/molRamstad 1961, 3rd Law, Gurvich TPIS
1.48341.2 [SiH3SiH]+ (g) → [SiH2SiH2]+ (g) ΔrH°(0 K) = -12.94 ± 1.00 kcal/molRuscic G4
1.38198.3 Si (cr,l) + 2 F2 (g) → SiF4 (g) ΔrH°(298.15 K) = -1615.78 ± 0.46 (×3.292) kJ/molJohnson 1986, Johnson 1986
1.28168.10 SiO (g) → Si (g) O (g) ΔrH°(0 K) = 190.23 ± 0.30 kcal/molKarton 2011

Top 10 species with enthalpies of formation correlated to the ΔfH° of [SiH2SiH2]+ (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
68.9 DisileneSiH2SiH2 (g, singlet)[SiH2]=[SiH2]288.6280.0± 1.8kJ/mol60.20276 ±
0.00066
15435-77-5*2
68.9 DisileneSiH2SiH2 (g)[SiH2]=[SiH2]288.6280.0± 1.8kJ/mol60.20276 ±
0.00066
15435-77-5*0
67.0 1-Disilanylium-1-yl[SiH3SiH]+ (g)[SiH3][SiH+]1124.01116.4± 2.2kJ/mol60.20221 ±
0.00066
108492-64-4*0
66.6 mu-Hydrotrihydrodisilicon cation[Si(HSiH3)]+ (g)[SiH3-]1[H-][Si+3]11160.01151.9± 2.6kJ/mol60.20221 ±
0.00066
*497967-55-2*0
62.4 SilylsilyleneSiH3SiH (g)[SiH3][SiH]317.2309.4± 2.0kJ/mol60.20276 ±
0.00066
50420-90-1*0
62.4 SilylsilyleneSiH3SiH (g, singlet)[SiH3][SiH]317.2309.4± 2.0kJ/mol60.20276 ±
0.00066
50420-90-1*2
61.1 DisilaneSiH3SiH3 (g)[SiH3][SiH3]92.075.9± 1.3kJ/mol62.21864 ±
0.00073
1590-87-0*0
58.3 SilaneSiH4 (g)[SiH4]42.6633.04± 0.63kJ/mol32.11726 ±
0.00041
7803-62-5*0
57.7 mu-HydrotrihydrodisiliconSiH2(HSiH) (g)[SiH2]([H-]1)[SiH+]1317.7307.6± 2.2kJ/mol60.20276 ±
0.00066
497967-56-3*0
55.8 DisilanylSiH3SiH2 (g)[SiH3][SiH2]242.5230.5± 1.6kJ/mol61.21070 ±
0.00069
73151-72-1*0

Most Influential reactions involving [SiH2SiH2]+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.2638375.4 [Si(HSiH3)]+ (g) → [SiH2SiH2]+ (g) ΔrH°(0 K) = -22.45 ± 0.90 kcal/molRuscic W1RO
0.2628316.1 SiH2SiH2 (g, singlet) → [SiH2SiH2]+ (g) ΔrH°(0 K) = 8.09 ± 0.03 eVRuscic 1991e
0.2138375.2 [Si(HSiH3)]+ (g) → [SiH2SiH2]+ (g) ΔrH°(0 K) = -21.18 ± 1.00 kcal/molRuscic G4
0.2028341.4 [SiH3SiH]+ (g) → [SiH2SiH2]+ (g) ΔrH°(0 K) = -13.33 ± 0.90 kcal/molRuscic W1RO
0.1768375.1 [Si(HSiH3)]+ (g) → [SiH2SiH2]+ (g) ΔrH°(0 K) = -20.87 ± 1.10 kcal/molRuscic G3X
0.1638341.2 [SiH3SiH]+ (g) → [SiH2SiH2]+ (g) ΔrH°(0 K) = -12.94 ± 1.00 kcal/molRuscic G4
0.1618328.5 SiH3SiH3 (g) → [SiH2SiH2]+ (g) H2 (g) ΔrH°(0 K) = 10.128 ± 0.040 eVRuscic W1RO
0.1478316.5 SiH2SiH2 (g, singlet) → [SiH2SiH2]+ (g) ΔrH°(0 K) = 8.061 ± 0.040 eVRuscic W1RO
0.1358341.1 [SiH3SiH]+ (g) → [SiH2SiH2]+ (g) ΔrH°(0 K) = -12.93 ± 1.10 kcal/molRuscic G3X
0.1268375.3 [Si(HSiH3)]+ (g) → [SiH2SiH2]+ (g) ΔrH°(0 K) = -20.87 ± 1.30 kcal/molRuscic CBS-n
0.1038328.1 SiH3SiH3 (g) → [SiH2SiH2]+ (g) H2 (g) ΔrH°(0 K) = 10.10 ± 0.05 eVRuscic 1991d
0.0968341.3 [SiH3SiH]+ (g) → [SiH2SiH2]+ (g) ΔrH°(0 K) = -12.65 ± 1.30 kcal/molRuscic CBS-n
0.0488328.3 SiH3SiH3 (g) → [SiH2SiH2]+ (g) H2 (g) ΔrH°(0 K) = 10.133 ± 0.073 eVRuscic G4
0.0448316.3 SiH2SiH2 (g, singlet) → [SiH2SiH2]+ (g) ΔrH°(0 K) = 8.150 ± 0.073 eVRuscic G4
0.0298328.2 SiH3SiH3 (g) → [SiH2SiH2]+ (g) H2 (g) ΔrH°(0 K) = 10.131 ± 0.093 eVRuscic G3X
0.0278316.2 SiH2SiH2 (g, singlet) → [SiH2SiH2]+ (g) ΔrH°(0 K) = 8.151 ± 0.093 eVRuscic G3X
0.0268328.4 SiH3SiH3 (g) → [SiH2SiH2]+ (g) H2 (g) ΔrH°(0 K) = 10.086 ± 0.099 eVRuscic CBS-n
0.0248316.4 SiH2SiH2 (g, singlet) → [SiH2SiH2]+ (g) ΔrH°(0 K) = 8.105 ± 0.099 eVRuscic CBS-n


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.148 of the Thermochemical Network (2023); available at ATcT.anl.gov
4   T. L. Nguyen, J. Peeters, J.-F. Müller, A. Perera, D. H. Bross, B. Ruscic, and J. F. Stanton,
Methanediol from Cloud-Processed Formaldehyde is Only a Minor Source of Atmospheric Formic Acid
Natl. Acad. Sci. 120, e2304650120/1-8 (2023) [DOI: 10.1073/pnas.2304650120]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.