Selected ATcT [1, 2] enthalpy of formation based on version 1.140 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.130 to fully include the highest-level electronic structure computations described in reference [4].

Hydroxymethyl

Formula: CH2OH (g)
CAS RN: 2597-43-5
ATcT ID: 2597-43-5*0
SMILES: [CH2]O
InChI: InChI=1S/CH3O/c1-2/h2H,1H2
InChIKey: CBOIHMRHGLHBPB-UHFFFAOYSA-N
Hills Formula: C1H3O1

2D Image:

[CH2]O
Aliases: CH2OH; Hydroxymethyl; Hydroxymethyl radical; Methanol radical; H2COH; OHCH2; HOCH2
Relative Molecular Mass: 31.03392 ± 0.00088

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-10.28-16.58± 0.28kJ/mol

3D Image of CH2OH (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CH2OH (g)

The 20 contributors listed below account only for 61.3% of the provenance of ΔfH° of CH2OH (g).
A total of 198 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
9.72914.9 CH3OH (g) → CH2OH (g) H (g) ΔrH°(0 K) = 94.59 ± 0.17 kcal/molNguyen 2015a
9.62916.1 CH2OH (g) → CH2O (g) H (g) ΔrH°(0 K) = 10160 ± 70 cm-1Ryazanov 2012
7.62924.10 CH2OH (g) → CH3O (g) ΔrH°(0 K) = 9.47 ± 0.17 kcal/molNguyen 2015a
7.42909.3 CH2OH (g) → [CH2OH]+ (g) ΔrH°(0 K) = 7.553 ± 0.006 (×1.384) eVRuscic 1991, Ruscic 1991a, Litorja 1998a
7.32916.10 CH2OH (g) → CH2O (g) H (g) ΔrH°(0 K) = 121.88 ± 0.46 (×2.089) kJ/molMarenich 2003b, note unc2
2.12909.1 CH2OH (g) → [CH2OH]+ (g) ΔrH°(0 K) = 7.56 ± 0.01 (×1.542) eVDyke 1984, Baker 1995a
2.02916.11 CH2OH (g) → CH2O (g) H (g) ΔrH°(0 K) = 10188 ± 150 cm-1Kamarchik 2012, est unc
2.02919.2 CH2OH (g) HBr (g) → CH3OH (g) Br (g) ΔrH°(450 K) = -38.78 ± 1.53 kJ/molDobe 1996, 2nd Law
2.02867.2 CH3OH (g) + 3/2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -182.72 ± 0.05 (×1.61) kcal/molRossini 1932a, Domalski 1972, Weltner 1951, Rossini 1934a, note old units, mw conversion
1.62908.9 CH2OH (g) → C (g) + 3 H (g) O (g) ΔrH°(0 K) = 386.11 ± 0.50 kcal/molMatus 2007
1.22909.2 CH2OH (g) → [CH2OH]+ (g) ΔrH°(0 K) = 7.56 ± 0.02 eVTao 1992
1.12917.1 [CH2OH]+ (g) → CH2O (g) H+ (g) ΔrH°(0 K) = 704.98 ± 0.39 kJ/molCzako 2009
1.12914.11 CH3OH (g) → CH2OH (g) H (g) ΔrH°(0 K) = 95.05 ± 0.50 kcal/molMatus 2007
1.12921.9 CH2OH (g) CH4 (g) → CH3OH (g) CH3 (g) ΔrH°(0 K) = 8.6 ± 0.5 kcal/molMatus 2007
1.12921.10 CH2OH (g) CH4 (g) → CH3OH (g) CH3 (g) ΔrH°(0 K) = 8.5 ± 0.5 kcal/molFeller 2000a
0.82924.11 CH2OH (g) → CH3O (g) ΔrH°(0 K) = 9.62 ± 0.50 kcal/molMatus 2007
0.82909.12 CH2OH (g) → [CH2OH]+ (g) ΔrH°(0 K) = 7.523 ± 0.025 eVMatus 2007, est unc
0.73989.11 CH3CH2OH (g) CH2OH (g) → CH2CH2OH (g, gauche-syn) CH3OH (g) ΔrH°(0 K) = 25.63 ± 2.00 kJ/molKlippenstein 2017
0.65105.5 (CH2OH)2 (g) → 2 CH2OH (g) ΔrH°(0 K) = 83.78 ± 1.50 kcal/molRuscic W1RO
0.63989.9 CH3CH2OH (g) CH2OH (g) → CH2CH2OH (g, gauche-syn) CH3OH (g) ΔrH°(0 K) = 5.53 ± 0.50 kcal/molMatus 2007, est unc

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH2OH (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
35.5 MethanolCH3OH (g)CO-190.02-200.91± 0.15kJ/mol32.04186 ±
0.00090
67-56-1*0
34.8 MethanolCH3OH (cr,l)CO-235.27-238.60± 0.15kJ/mol32.04186 ±
0.00090
67-56-1*500
31.0 Hydroxymethylium[CH2OH]+ (g)[CH2+]O717.68709.74± 0.18kJ/mol31.03337 ±
0.00088
18682-95-6*0
29.7 MethoxyCH3O (g)C[O]28.9621.59± 0.27kJ/mol31.03392 ±
0.00088
2143-68-2*0
29.2 Methoxide[CH3O]- (g)C[O-]-122.43-130.16± 0.27kJ/mol31.03447 ±
0.00088
3315-60-4*0
17.2 ChlorohydroxymethylCH(Cl)OH (g)[CH](Cl)O-54.8-60.6± 1.1kJ/mol65.4787 ±
0.0012
147139-06-8*0
17.2 ChlorohydroxymethylCH(Cl)OH (g, syn-gauche)[CH](Cl)O-54.8-60.8± 1.1kJ/mol65.4787 ±
0.0012
147139-06-8*1
16.2 DihydroxymethylCH(OH)2 (g, syn-anti)[CH](O)O-197.1-206.5± 1.2kJ/mol47.0333 ±
0.0010
14840-85-8*1
16.2 DihydroxymethylCH(OH)2 (g)[CH](O)O-197.1-205.4± 1.2kJ/mol47.0333 ±
0.0010
14840-85-8*0
16.1 Methanol cation[CH3OH]+ (g)[CH3+]O856.83846.51± 0.32kJ/mol32.04131 ±
0.00090
12538-91-9*0

Most Influential reactions involving CH2OH (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.1992924.10 CH2OH (g) → CH3O (g) ΔrH°(0 K) = 9.47 ± 0.17 kcal/molNguyen 2015a
0.1964032.6 CH3OCH3 (g) CH2OH (g) → CH3OCH2 (g) CH3OH (g) ΔrH°(0 K) = 0.24 ± 2.00 kJ/molKlippenstein 2017
0.1342914.9 CH3OH (g) → CH2OH (g) H (g) ΔrH°(0 K) = 94.59 ± 0.17 kcal/molNguyen 2015a
0.1268363.4 SiH2OH (g) CH2O (g) → SiH2O (g) CH2OH (g) ΔrH°(0 K) = 25.21 ± 0.9 kcal/molRuscic W1RO
0.1192909.3 CH2OH (g) → [CH2OH]+ (g) ΔrH°(0 K) = 7.553 ± 0.006 (×1.384) eVRuscic 1991, Ruscic 1991a, Litorja 1998a
0.1082916.1 CH2OH (g) → CH2O (g) H (g) ΔrH°(0 K) = 10160 ± 70 cm-1Ryazanov 2012
0.1028363.2 SiH2OH (g) CH2O (g) → SiH2O (g) CH2OH (g) ΔrH°(0 K) = 25.79 ± 1.0 kcal/molRuscic G4
0.0935855.4 CH(Cl)OH (g, syn-gauche) CH3CH3 (g) → CH2OH (g) CH3CH2Cl (g) ΔrH°(0 K) = 3.86 ± 0.85 kcal/molRuscic W1RO
0.0925854.4 CH(Cl)OH (g, syn-gauche) CH4 (g) → CH2OH (g) CH3Cl (g) ΔrH°(0 K) = 8.68 ± 0.85 kcal/molRuscic W1RO
0.0892910.8 [CH2OH]- (g) → CH2OH (g) ΔrH°(0 K) = -0.207 ± 0.050 eVRuscic W1RO
0.0887165.5 CH3CH2CHOH (g) CH2OH (g) → 2 CH3CHOH (g, gauche-anti) ΔrH°(0 K) = -4.89 ± 0.85 kcal/molRuscic W1RO
0.0884393.5 CH(OH)2 (g, syn-anti) CH3O (g) → CH2(OH)O (g, gauche) CH2OH (g) ΔrH°(0 K) = -0.25 ± 0.85 kcal/molRuscic W1RO
0.0874392.5 CH(OH)2 (g, syn-anti) CH3OH (g) → CH2(OH)2 (g, C2 gauche) CH2OH (g) ΔrH°(0 K) = -0.56 ± 0.85 kcal/molRuscic W1RO
0.0848363.1 SiH2OH (g) CH2O (g) → SiH2O (g) CH2OH (g) ΔrH°(0 K) = 25.41 ± 1.1 kcal/molRuscic G3X
0.0835855.2 CH(Cl)OH (g, syn-gauche) CH3CH3 (g) → CH2OH (g) CH3CH2Cl (g) ΔrH°(0 K) = 4.05 ± 0.90 kcal/molRuscic G4
0.0835855.1 CH(Cl)OH (g, syn-gauche) CH3CH3 (g) → CH2OH (g) CH3CH2Cl (g) ΔrH°(0 K) = 3.67 ± 0.90 kcal/molRuscic G3X
0.0825854.2 CH(Cl)OH (g, syn-gauche) CH4 (g) → CH2OH (g) CH3Cl (g) ΔrH°(0 K) = 9.11 ± 0.90 kcal/molRuscic G4
0.0825854.1 CH(Cl)OH (g, syn-gauche) CH4 (g) → CH2OH (g) CH3Cl (g) ΔrH°(0 K) = 8.88 ± 0.90 kcal/molRuscic G3X
0.0822916.10 CH2OH (g) → CH2O (g) H (g) ΔrH°(0 K) = 121.88 ± 0.46 (×2.089) kJ/molMarenich 2003b, note unc2
0.0787165.1 CH3CH2CHOH (g) CH2OH (g) → 2 CH3CHOH (g, gauche-anti) ΔrH°(0 K) = -4.79 ± 0.90 kcal/molRuscic G3X


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.140 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.