Selected ATcT [1, 2] enthalpy of formation based on version 1.140 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.130 to fully include the highest-level electronic structure computations described in reference [4].

Norbornadiene

Formula: (CHCH)(CHCH2CH)(CHCH) (l)
CAS RN: 121-46-0
ATcT ID: 121-46-0*500
SMILES: C1C2C=CC1C=C2
InChI: InChI=1S/C7H8/c1-2-7-4-3-6(1)5-7/h1-4,6-7H,5H2
InChIKey: SJYNFBVQFBRSIB-UHFFFAOYSA-N
Hills Formula: C7H8

2D Image:

C1C2C=CC1C=C2
Aliases: (CHCH)(CHCH2CH)(CHCH); Norbornadiene; Bicyclo[2.2.1]hepta-2,5-diene; 2,5-Norbornadiene; 3,6-Methano-1,4-cyclohexadiene; Bicyclo[2.2.1]heptadiene; NSC 13672; (CHCH)CHCH2CH(CHCH)
Relative Molecular Mass: 92.1384 ± 0.0056

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
209.3± 1.1kJ/mol

Top contributors to the provenance of ΔfH° of (CHCH)(CHCH2CH)(CHCH) (l)

The 20 contributors listed below account only for 83.7% of the provenance of ΔfH° of (CHCH)(CHCH2CH)(CHCH) (l).
A total of 54 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
35.77254.6 (CHCH)(CHCH2CH)(CHCH) (g) → CH2(CHCHCHCH) (g) HCCH (g) ΔrG°(607.6 K) = 2.189 ± 0.192 kcal/molWalsh 1975, 3rd Law
15.17256.1 (CHCH)(CHCH2CH)(CHCH) (l) → (CHCH)(CHCH2CH)(CHCH) (g) ΔrH°(298.15 K) = 7.87 ± 0.20 kcal/molHall 1973, as quoted by Cox 1970
12.57256.2 (CHCH)(CHCH2CH)(CHCH) (l) → (CHCH)(CHCH2CH)(CHCH) (g) ΔrH°(298.15 K) = 8.08 ± 0.22 kcal/molSteele 1978, as quoted by Pedley 1986
5.03839.1 CH2(CHCHCHCH) (g) + 2 H2 (g) → CH2(CH2CH2CH2CH2) (g) ΔrH°(355.15 K) = -50.907 ± 0.200 kcal/molKistiakowsky 1936
4.77257.2 (CHCH)(CHCH2CH)(CHCH) (l) + 9 O2 (g) → 7 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -982.72 ± 0.72 (×1.646) kcal/molSteele 1978, as quoted by Pedley 1986
1.77257.3 (CHCH)(CHCH2CH)(CHCH) (l) + 9 O2 (g) → 7 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -979.6 ± 1 (×1.957) kcal/molSkuratov 1958
1.53829.4 CH2(CH2CH2CH2CH2) (l) + 15/2 O2 (g) → 5 CO2 (g) + 5 H2O (l) ΔrH°(298.15 K) = -786.84 ± 0.14 kcal/molKaarsemaker 1952, as quoted by Cox 1970
1.43836.6 CH2(CHCHCHCH) (g) → 5 C (g) + 6 H (g) ΔrH°(0 K) = 1123.70 ± 0.50 kcal/molKarton 2017
0.97254.5 (CHCH)(CHCH2CH)(CHCH) (g) → CH2(CHCHCHCH) (g) HCCH (g) ΔrH°(0 K) = 27.45 ± 1.2 kcal/molRuscic W1RO
0.77254.4 (CHCH)(CHCH2CH)(CHCH) (g) → CH2(CHCHCHCH) (g) HCCH (g) ΔrH°(0 K) = 28.27 ± 1.3 (×1.044) kcal/molRuscic CBS-n
0.77254.2 (CHCH)(CHCH2CH)(CHCH) (g) → CH2(CHCHCHCH) (g) HCCH (g) ΔrH°(0 K) = 28.27 ± 1.3 (×1.044) kcal/molRuscic G4
0.67254.1 (CHCH)(CHCH2CH)(CHCH) (g) → CH2(CHCHCHCH) (g) HCCH (g) ΔrH°(0 K) = 28.08 ± 1.4 kcal/molRuscic G3X
0.63829.1 CH2(CH2CH2CH2CH2) (l) + 15/2 O2 (g) → 5 CO2 (g) + 5 H2O (l) ΔrH°(298.15 K) = -3290.85 ± 0.72 (×1.242) kJ/molJohnson 1946
0.36760.1 CH2(CHCHCHCHCHCH) (g) + 3 H2 (g) → CH2(CH2CH2CH2CH2CH2CH2) (g) ΔrH°(355.15 K) = -72.862 ± 0.300 kcal/molConn 1939
0.33829.3 CH2(CH2CH2CH2CH2) (l) + 15/2 O2 (g) → 5 CO2 (g) + 5 H2O (l) ΔrH°(298.15 K) = -786.61 ± 0.30 kcal/molSpitzer 1947
0.37254.3 (CHCH)(CHCH2CH)(CHCH) (g) → CH2(CHCHCHCH) (g) HCCH (g) ΔrH°(0 K) = 28.91 ± 1.6 (×1.269) kcal/molRuscic CBS-n
0.36829.1 C6H4(CHCHCH2) (cr,l) + 11 O2 (g) → 9 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -1146.12 ± 0.30 kcal/molStull 1961
0.2125.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
0.22287.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
0.23842.5 CH2(CHCHCHCH) (g) + 2 CH3CH3 (g) → CH2(CH2CH2CH2CH2) (g) + 2 CH2CH2 (g) ΔrH°(0 K) = 15.37 ± 0.85 kcal/molRuscic W1RO

Top 10 species with enthalpies of formation correlated to the ΔfH° of (CHCH)(CHCH2CH)(CHCH) (l)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
83.0 Norbornadiene(CHCH)(CHCH2CH)(CHCH) (g)C1C2C=CC1C=C2268.04242.60± 0.94kJ/mol92.1384 ±
0.0056
121-46-0*0
51.3 CyclopentadieneCH2(CHCHCHCH) (g)C1C=CC=C1151.82134.70± 0.54kJ/mol66.1011 ±
0.0040
542-92-7*0
23.5 CyclopentaneCH2(CH2CH2CH2CH2) (g)C1CCCC1-43.37-75.94± 0.38kJ/mol70.1329 ±
0.0041
287-92-3*0
23.4 CyclopentaneCH2(CH2CH2CH2CH2) (l)C1CCCC1-104.63± 0.38kJ/mol70.1329 ±
0.0041
287-92-3*590
20.5 CyclopenteneCH2(CH2CHCHCH2) (g)C1CC=CC159.9435.67± 0.43kJ/mol68.1170 ±
0.0040
142-29-0*0
18.0 CyclopenteneCH2(CH2CHCHCH2) (l)C1CC=CC17.39± 0.49kJ/mol68.1170 ±
0.0040
142-29-0*590
16.6 IndeneC6H4(CHCHCH2) (g)c1ccc2c(c1)CC=C2183.91160.02± 0.75kJ/mol116.1598 ±
0.0072
95-13-6*0
16.1 CyclopentadieneCH2(CHCHCHCH) (l)C1C=CC=C1110.39± 0.57kJ/mol66.1011 ±
0.0040
542-92-7*590
14.1 AcetyleneHCCH (g)C#C228.86228.30± 0.12kJ/mol26.0373 ±
0.0016
74-86-2*0
14.1 Acetylene cation[HCCH]+ (g)C#[CH+]1328.871328.20± 0.12kJ/mol26.0367 ±
0.0016
25641-79-6*0

Most Influential reactions involving (CHCH)(CHCH2CH)(CHCH) (l)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.5367256.1 (CHCH)(CHCH2CH)(CHCH) (l) → (CHCH)(CHCH2CH)(CHCH) (g) ΔrH°(298.15 K) = 7.87 ± 0.20 kcal/molHall 1973, as quoted by Cox 1970
0.4437256.2 (CHCH)(CHCH2CH)(CHCH) (l) → (CHCH)(CHCH2CH)(CHCH) (g) ΔrH°(298.15 K) = 8.08 ± 0.22 kcal/molSteele 1978, as quoted by Pedley 1986
0.0487257.2 (CHCH)(CHCH2CH)(CHCH) (l) + 9 O2 (g) → 7 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -982.72 ± 0.72 (×1.646) kcal/molSteele 1978, as quoted by Pedley 1986
0.0177257.3 (CHCH)(CHCH2CH)(CHCH) (l) + 9 O2 (g) → 7 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -979.6 ± 1 (×1.957) kcal/molSkuratov 1958


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.140 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.