Selected ATcT [1, 2] enthalpy of formation based on version 1.140 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.130 to fully include the highest-level electronic structure computations described in reference [4].

Xenonium

Formula: [XeH]+ (g)
CAS RN: 37276-91-8
ATcT ID: 37276-91-8*0
SMILES: [Xe+2][H-]
InChI: InChI=1S/HXe/h1H/q+1
InChIKey: YPQLIBJXUXECHV-UHFFFAOYSA-N
Hills Formula: H1Xe1+

2D Image:

[Xe+2][H-]
Aliases: [XeH]+; Xenonium; Xenon hydride cation; Xenon hydride ion (1+); Hydroxenon cation; Hydroxenon ion (1+); XeH+
Relative Molecular Mass: 132.2974 ± 0.0200

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
1038.191036.42± 0.88kJ/mol

3D Image of [XeH]+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [XeH]+ (g)

The 20 contributors listed below account only for 86.6% of the provenance of ΔfH° of [XeH]+ (g).
A total of 26 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
29.28838.2 [NNH]+ (g) Xe (g) → N2 (g) [XeH]+ (g) ΔrG°(296 K) = -9.99 ± 0.69 kJ/molBohme 1980, 3rd Law, note unc
13.01868.3 [OH]+ (g) N2 (g) → O (g) [NNH]+ (g) ΔrG°(298.15 K) = -1.13 ± 1.38 kJ/molBohme 1980, 3rd Law, note unc
11.81868.4 [OH]+ (g) N2 (g) → O (g) [NNH]+ (g) ΔrG°(298.15 K) = -1.33 ± 1.45 kJ/molBohme 1980, 3rd Law, note unc
5.58838.3 [NNH]+ (g) Xe (g) → N2 (g) [XeH]+ (g) ΔrH°(298.15 K) = -0.63 ± 0.38 kcal/molBohme 1980, 2nd Law, note unc
3.48838.1 [NNH]+ (g) Xe (g) → N2 (g) [XeH]+ (g) ΔrG°(296 K) = -10.08 ± 2.01 kJ/molBohme 1980, 3rd Law, note unc
3.08837.1 [XeH]+ (g) → Xe (g) H+ (g) ΔrH°(0 K) = 116.75 ± 1.2 kcal/molDixon 2005
2.28839.1 [XeH]+ (g) CO2 (g) → [HOCO]+ (g) Xe (g) ΔrG°(800 K) = -30.29 ± 3.58 (×1.542) kJ/molBohme 1980, 3rd Law, note unc
2.11869.3 [NNH]+ (g) CO2 (g) → N2 (g) [HOCO]+ (g) ΔrG°(561 K) = -12.6 ± 0.6 (×1.269) kcal/molSzulejko 1993, 3rd Law, note unc5
1.71867.8 [NNH]+ (g) → N2 (g) H+ (g) ΔrH°(0 K) = 116.35 ± 0.90 kcal/molRuscic W1RO
1.51846.9 HNNH (g, trans) → [NNH]+ (g) H (g) ΔrH°(0 K) = 10.914 ± 0.040 eVRuscic W1RO
1.51850.8 NNH (g) → [NNH]+ (g) ΔrH°(0 K) = 8.198 ± 0.040 eVRuscic W1RO
1.41869.4 [NNH]+ (g) CO2 (g) → N2 (g) [HOCO]+ (g) ΔrH°(561 K) = -10.7 ± 0.6 (×1.542) kcal/molSzulejko 1993, 2nd Law, note unc5
1.41867.12 [NNH]+ (g) → N2 (g) H+ (g) ΔrH°(0 K) = 116.4 ± 1.0 kcal/molKomornicki 1992, note unc2
1.41871.1 [NNH]+ (g) CO (g) → [HCO]+ (g) N2 (g) ΔrH°(0 K) = -24.1 ± 1.0 kcal/molKomornicki 1992, est unc
1.38838.4 [NNH]+ (g) Xe (g) → N2 (g) [XeH]+ (g) ΔrG°(453 K) = -4.2 ± 0.5 (×1.509) kcal/molSzulejko 1993, 3rd Law, note unc5
1.31869.1 [NNH]+ (g) CO2 (g) → N2 (g) [HOCO]+ (g) ΔrG°(800 K) = -59.61 ± 3.93 kJ/molBohme 1980, 3rd Law, note unc
1.21872.1 [NNH]+ (g) CH4 (g) → [CH5]+ (g) N2 (g) ΔrH°(0 K) = -12.2 ± 1.0 kcal/molKomornicki 1992, est unc
1.21869.2 [NNH]+ (g) CO2 (g) → N2 (g) [HOCO]+ (g) ΔrH°(0 K) = -12.1 ± 1.0 kcal/molKomornicki 1992, est unc
0.91850.9 NNH (g) → [NNH]+ (g) ΔrH°(0 K) = 8.19 ± 0.05 eVBozkaya 2010
0.88838.5 [NNH]+ (g) Xe (g) → N2 (g) [XeH]+ (g) ΔrH°(453 K) = -1.6 ± 0.5 (×1.915) kcal/molSzulejko 1993, 2nd Law, note unc5

Top 10 species with enthalpies of formation correlated to the ΔfH° of [XeH]+ (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
74.7 Diazynium[NNH]+ (g)N#[NH+]1042.571038.95± 0.67kJ/mol29.02087 ±
0.00016
12357-66-3*0
11.5 Diazenide[NNH]- (g, triplet)N#N.[H-]347.5344.6± 1.6kJ/mol29.02197 ±
0.00016
71004-29-0*1
11.2 Diazenide[NNH]- (g, vdW)N#N.[H-]175.6176.7± 1.6kJ/mol29.02197 ±
0.00016
71004-29-0*100
11.2 Diazenide[NNH]- (g)N#N.[H-]175.6176.7± 1.6kJ/mol29.02197 ±
0.00016
71004-29-0*0
8.5 Hydroxyoxomethylium[HOCO]+ (g)O[C+]=O600.69597.60± 0.43kJ/mol45.0169 ±
0.0010
638-71-1*0
8.3 Methanium[CH5]+ (g)[CH5+]921.99911.74± 0.44kJ/mol17.04985 ±
0.00087
15135-49-6*0
6.0 DiazenylNNH (g)[N]=N252.14249.23± 0.45kJ/mol29.02142 ±
0.00016
36882-13-0*0
4.2 (E)-DiazeneHNNH (g, trans)[H]/N=N/[H]207.11199.97± 0.41kJ/mol30.02936 ±
0.00020
15626-43-4*0
4.2 DiazeneHNNH (g, trans-cis equilib)N=N207.11199.98± 0.41kJ/mol30.02936 ±
0.00020
3618-05-1*1
4.2 DiazeneHNNH (g, trans-cis-iso equilib)N=N207.11199.98± 0.41kJ/mol30.02936 ±
0.00020
3618-05-1*0

Most Influential reactions involving [XeH]+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.7058838.2 [NNH]+ (g) Xe (g) → N2 (g) [XeH]+ (g) ΔrG°(296 K) = -9.99 ± 0.69 kJ/molBohme 1980, 3rd Law, note unc
0.1328838.3 [NNH]+ (g) Xe (g) → N2 (g) [XeH]+ (g) ΔrH°(298.15 K) = -0.63 ± 0.38 kcal/molBohme 1980, 2nd Law, note unc
0.0838838.1 [NNH]+ (g) Xe (g) → N2 (g) [XeH]+ (g) ΔrG°(296 K) = -10.08 ± 2.01 kJ/molBohme 1980, 3rd Law, note unc
0.0338838.4 [NNH]+ (g) Xe (g) → N2 (g) [XeH]+ (g) ΔrG°(453 K) = -4.2 ± 0.5 (×1.509) kcal/molSzulejko 1993, 3rd Law, note unc5
0.0308837.1 [XeH]+ (g) → Xe (g) H+ (g) ΔrH°(0 K) = 116.75 ± 1.2 kcal/molDixon 2005
0.0298839.1 [XeH]+ (g) CO2 (g) → [HOCO]+ (g) Xe (g) ΔrG°(800 K) = -30.29 ± 3.58 (×1.542) kJ/molBohme 1980, 3rd Law, note unc
0.0208838.5 [NNH]+ (g) Xe (g) → N2 (g) [XeH]+ (g) ΔrH°(453 K) = -1.6 ± 0.5 (×1.915) kcal/molSzulejko 1993, 2nd Law, note unc5


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.140 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.