Selected ATcT [1, 2] enthalpy of formation based on version 1.140 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.130 to fully include the highest-level electronic structure computations described in reference [4].

Acetone

Formula: CH3C(O)CH3 (cr,l)
CAS RN: 67-64-1
ATcT ID: 67-64-1*500
SMILES: CC(=O)C
InChI: InChI=1S/C3H6O/c1-3(2)4/h1-2H3
InChIKey: CSCPPACGZOOCGX-UHFFFAOYSA-N
Hills Formula: C3H6O1

2D Image:

CC(=O)C
Aliases: CH3C(O)CH3; Acetone; 2-Propanone; Dimethyl ketone; beta-Ketopropane; Dimethylformaldehyde; Propanone; Propan-2-one; Methyl ketone; Pyroacetic ether; UN 1090; (CH3)2CO; CH3COCH3
Relative Molecular Mass: 58.0791 ± 0.0025

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-244.59-247.71± 0.26kJ/mol

Top contributors to the provenance of ΔfH° of CH3C(O)CH3 (cr,l)

The 20 contributors listed below account only for 54.9% of the provenance of ΔfH° of CH3C(O)CH3 (cr,l).
A total of 302 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
25.74770.2 CH3CH(OH)CH3 (cr,l) + 9/2 O2 (g) → 3 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -479.39 ± 0.10 kcal/molSnelson 1961
4.44770.1 CH3CH(OH)CH3 (cr,l) + 9/2 O2 (g) → 3 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -479.25 ± 0.24 kcal/molParks 1950a, mw conversion
3.17088.1 CH3C(O)CH3 (g) → [CH3CO]+ (g) CH3 (g) ΔrH°(0 K) = 10.532 ± 0.006 eVBodi 2015
2.2125.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
1.97090.2 CH3C(O)CH3 (g) H2 (g) → CH3CH(OH)CH3 (g) ΔrG°(434 K) = -5.514 ± 0.083 kJ/molBuckley 1965, 3rd Law
1.84852.2 CH3C(O)OH (g) → OH (g) [CH3CO]+ (g) ΔrH°(0 K) = 11.641 ± 0.008 eVShuman 2010
1.84770.3 CH3CH(OH)CH3 (cr,l) + 9/2 O2 (g) → 3 CO2 (g) + 4 H2O (cr,l) ΔrH°(303.15 K) = -2006.33 ± 0.22 (×7.025) kJ/molChao 1965, mw conversion
1.82287.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
1.67086.1 CH3C(O)CH3 (g) + 4 O2 (g) → 3 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -435.42 ± 0.44 kcal/molMiles 1941, note unc, note old units
1.27085.1 CH4 (g) H2O (g) → CH3C(O)CH3 (g) + 4 H2 (g) ΔrH°(0 K) = 238.44 ± 2.00 kJ/molKlippenstein 2017
1.27259.1 CH3C(O)C(O)CH3 (cr,l) → CH3C(O)C(O)CH3 (g) ΔrH°(298.15 K) = 9.25 ± 0.25 kcal/molNicholson 1954
1.17168.6 CH3CH2CHO (g) → CH3C(O)CH3 (g) ΔrH°(0 K) = -29.60 ± 2.00 kJ/molKlippenstein 2017
1.04764.7 CH3CH(OH)CH3 (g) → CH3CH2CH2OH (g) ΔrH°(0 K) = 17.33 ± 2.00 kJ/molKlippenstein 2017
0.94768.5 CH3CH(OH)CH3 (g) CH3CH2CH3 (g) → CH3CH2OH (g) CH(CH3)3 (g) ΔrH°(0 K) = 7.85 ± 2.00 kJ/molKlippenstein 2017
0.94769.2 CH3CH(OH)CH3 (g) → CH3CH2OCH3 (g) ΔrH°(0 K) = 53.62 ± 2.00 kJ/molKlippenstein 2017
0.77155.1 CH4 (g) H2O (g) → CH3CH(O)CH3 (g) + 7/2 H2 (g) ΔrH°(0 K) = 413.23 ± 2.00 kJ/molKlippenstein 2017
0.77093.9 CH3C(O)CH3 (g) CH2CH2 (g) → CH3CHO (g) CH3CHCH2 (g) ΔrH°(0 K) = 4.84 ± 0.50 kcal/molPorterfield 2015, est unc
0.67263.5 CH3C(O)C(O)CH3 (g) CH3CH3 (g) → 2 CH3C(O)CH3 (g) ΔrH°(0 K) = -5.18 ± 0.9 kcal/molRuscic W1RO
0.57291.1 CH3CH2C(O)CH3 (cr,l) + 11/2 O2 (g) → 4 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -584.15 ± 0.27 kcal/molSinke 1965
0.52142.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3C(O)CH3 (cr,l)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.8 AcetoneCH3C(O)CH3 (g)CC(=O)C-199.99-216.93± 0.26kJ/mol58.0791 ±
0.0025
67-64-1*0
95.2 2-PropanolCH3CH(OH)CH3 (g)CC(O)C-248.66-272.76± 0.26kJ/mol60.0950 ±
0.0025
67-63-0*0
92.6 2-PropanolCH3CH(OH)CH3 (cr,l)CC(O)C-305.39-318.20± 0.27kJ/mol60.0950 ±
0.0025
67-63-0*500
35.5 Acetylium[CH3CO]+ (g)C[C+]=O666.65659.36± 0.42kJ/mol43.0441 ±
0.0016
15762-07-9*0
29.8 2,3-ButanedioneCH3C(O)C(O)CH3 (g)CC(=O)C(=O)C-310.75-327.32± 0.62kJ/mol86.0892 ±
0.0033
431-03-8*0
28.5 1-MethylethoxyCH3CH(O)CH3 (g)CC([O])C-25.12-43.89± 0.74kJ/mol59.0871 ±
0.0025
3958-66-5*0
28.5 Carbonic acidC(O)(OH)2 (aq, undissoc)OC(=O)O-698.665± 0.028kJ/mol62.0248 ±
0.0012
463-79-6*1000
27.6 AcetaldehydeCH3CHO (g)CC=O-154.95-165.48± 0.22kJ/mol44.0526 ±
0.0017
75-07-0*0
27.1 Acetaldehyde cation[CH3CHO]+ (g)CC=[O+]832.04822.06± 0.23kJ/mol44.0520 ±
0.0017
36505-03-0*0
27.1 WaterH2O (cr,l)O-286.270-285.798± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*500

Most Influential reactions involving CH3C(O)CH3 (cr,l)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.3757100.8 CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g) ΔrG°(313.81 K) = 1.552 ± 0.020 kJ/molTaylor 1900, 3rd Law
0.3757100.12 CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g) ΔrG°(297.65 K) = 3.032 ± 0.020 kJ/molBoublik 1972, 3rd Law, est unc
0.2407100.6 CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g) ΔrG°(298.60 K) = 2.973 ± 0.025 kJ/molTaylor 1900, 3rd Law
0.0037100.10 CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g) ΔrG°(226.61 K) = 10.362 ± 0.041 (×5.076) kJ/molDrucker 1915, 3rd Law
0.0037091.1 CH3C(O)CH3 (cr,l) H2 (g) → CH3CH(OH)CH3 (cr,l) ΔrH°(298.15 K) = -16.43 ± 0.24 (×1.756) kcal/molWiberg 1991
0.0007099.1 CH3C(O)CH3 (cr,l) + 4 O2 (g) → 3 CO2 (g) + 3 H2O (cr,l) ΔrH°(293 K) = -429.9 ± 2.1 kcal/molEmery 1911, est unc
0.0007100.2 CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g) ΔrH°(298.15 K) = 31.27 ± 0.16 (×3.084) kJ/molMajer 1985
0.0007100.4 CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g) ΔrH°(298.15 K) = 31.3 ± 0.5 (×1.044) kJ/molAmbrose 1975, est unc
0.0007100.11 CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g) ΔrH°(297.65 K) = 31.34 ± 0.38 (×1.414) kJ/molBoublik 1972, 2nd Law, est unc
0.0007101.6 CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g) ΔrH°(329.65 K) = 7.096 ± 0.072 (×1.795) kcal/molCollins 1949
0.0007101.1 CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g) ΔrH°(300.42 K) = 7.458 ± 0.008 (×16.35) kcal/molPennington 1957, note unc
0.0007101.3 CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g) ΔrH°(329.28 K) = 7.107 ± 0.018 (×7.661) kcal/molPennington 1957, note unc
0.0007100.3 CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g) ΔrH°(298.15 K) = 30.84 ± 0.60 kJ/molDella Gatta 1981
0.0007101.2 CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g) ΔrH°(317.90 K) = 7.256 ± 0.013 (×11.07) kcal/molPennington 1957, note unc
0.0007101.4 CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g) ΔrH°(337.94 K) = 7.011 ± 0.023 (×6.442) kcal/molPennington 1957, note unc
0.0007101.5 CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g) ΔrH°(345.03 K) = 6.921 ± 0.028 (×5.301) kcal/molPennington 1957, note unc
0.0007100.7 CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g) ΔrH°(313.81 K) = 30.73 ± 0.41 (×1.874) kJ/molTaylor 1900, 2nd Law
0.0007099.2 CH3C(O)CH3 (cr,l) + 4 O2 (g) → 3 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -427 ± 4 kcal/molDelepine 1900, Miles 1941, Kharasch 1929, est unc
0.0007100.13 CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g) ΔrH°(293.15 K) = 31.89 ± 0.13 (×6.583) kJ/molBelousov 1964, ThermoData 2004
0.0007100.9 CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g) ΔrH°(226.61 K) = 34.85 ± 1.07 kJ/molDrucker 1915, 2nd Law


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.140 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.