Selected ATcT [1, 2] enthalpy of formation based on version 1.140 of the Thermochemical Network [3]This version of ATcT results[3] was generated by additional expansion of version 1.130 to fully include the highest-level electronic structure computations described in reference [4].
|
Acetone |
Formula: CH3C(O)CH3 (cr,l) |
CAS RN: 67-64-1 |
ATcT ID: 67-64-1*500 |
SMILES: CC(=O)C |
InChI: InChI=1S/C3H6O/c1-3(2)4/h1-2H3 |
InChIKey: CSCPPACGZOOCGX-UHFFFAOYSA-N |
Hills Formula: C3H6O1 |
2D Image: |
|
Aliases: CH3C(O)CH3; Acetone; 2-Propanone; Dimethyl ketone; beta-Ketopropane; Dimethylformaldehyde; Propanone; Propan-2-one; Methyl ketone; Pyroacetic ether; UN 1090; (CH3)2CO; CH3COCH3 |
Relative Molecular Mass: 58.0791 ± 0.0025 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
-244.59 | -247.71 | ± 0.26 | kJ/mol |
|
Top contributors to the provenance of ΔfH° of CH3C(O)CH3 (cr,l)The 20 contributors listed below account only for 54.9% of the provenance of ΔfH° of CH3C(O)CH3 (cr,l). A total of 302 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 25.7 | 4770.2 | CH3CH(OH)CH3 (cr,l) + 9/2 O2 (g) → 3 CO2 (g) + 4 H2O (cr,l)  | ΔrH°(298.15 K) = -479.39 ± 0.10 kcal/mol | Snelson 1961 | 4.4 | 4770.1 | CH3CH(OH)CH3 (cr,l) + 9/2 O2 (g) → 3 CO2 (g) + 4 H2O (cr,l)  | ΔrH°(298.15 K) = -479.25 ± 0.24 kcal/mol | Parks 1950a, mw conversion | 3.1 | 7088.1 | CH3C(O)CH3 (g) → [CH3CO]+ (g) + CH3 (g)  | ΔrH°(0 K) = 10.532 ± 0.006 eV | Bodi 2015 | 2.2 | 125.2 | 1/2 O2 (g) + H2 (g) → H2O (cr,l)  | ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/mol | Rossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930 | 1.9 | 7090.2 | CH3C(O)CH3 (g) + H2 (g) → CH3CH(OH)CH3 (g)  | ΔrG°(434 K) = -5.514 ± 0.083 kJ/mol | Buckley 1965, 3rd Law | 1.8 | 4852.2 | CH3C(O)OH (g) → OH (g) + [CH3CO]+ (g)  | ΔrH°(0 K) = 11.641 ± 0.008 eV | Shuman 2010 | 1.8 | 4770.3 | CH3CH(OH)CH3 (cr,l) + 9/2 O2 (g) → 3 CO2 (g) + 4 H2O (cr,l)  | ΔrH°(303.15 K) = -2006.33 ± 0.22 (×7.025) kJ/mol | Chao 1965, mw conversion | 1.8 | 2287.1 | 2 H2 (g) + C (graphite) → CH4 (g)  | ΔrG°(1165 K) = 37.521 ± 0.068 kJ/mol | Smith 1946, note COf, 3rd Law | 1.6 | 7086.1 | CH3C(O)CH3 (g) + 4 O2 (g) → 3 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -435.42 ± 0.44 kcal/mol | Miles 1941, note unc, note old units | 1.2 | 7085.1 | 3 CH4 (g) + H2O (g) → CH3C(O)CH3 (g) + 4 H2 (g)  | ΔrH°(0 K) = 238.44 ± 2.00 kJ/mol | Klippenstein 2017 | 1.2 | 7259.1 | CH3C(O)C(O)CH3 (cr,l) → CH3C(O)C(O)CH3 (g)  | ΔrH°(298.15 K) = 9.25 ± 0.25 kcal/mol | Nicholson 1954 | 1.1 | 7168.6 | CH3CH2CHO (g) → CH3C(O)CH3 (g)  | ΔrH°(0 K) = -29.60 ± 2.00 kJ/mol | Klippenstein 2017 | 1.0 | 4764.7 | CH3CH(OH)CH3 (g) → CH3CH2CH2OH (g)  | ΔrH°(0 K) = 17.33 ± 2.00 kJ/mol | Klippenstein 2017 | 0.9 | 4768.5 | CH3CH(OH)CH3 (g) + CH3CH2CH3 (g) → CH3CH2OH (g) + CH(CH3)3 (g)  | ΔrH°(0 K) = 7.85 ± 2.00 kJ/mol | Klippenstein 2017 | 0.9 | 4769.2 | CH3CH(OH)CH3 (g) → CH3CH2OCH3 (g)  | ΔrH°(0 K) = 53.62 ± 2.00 kJ/mol | Klippenstein 2017 | 0.7 | 7155.1 | 3 CH4 (g) + H2O (g) → CH3CH(O)CH3 (g) + 7/2 H2 (g)  | ΔrH°(0 K) = 413.23 ± 2.00 kJ/mol | Klippenstein 2017 | 0.7 | 7093.9 | CH3C(O)CH3 (g) + CH2CH2 (g) → CH3CHO (g) + CH3CHCH2 (g)  | ΔrH°(0 K) = 4.84 ± 0.50 kcal/mol | Porterfield 2015, est unc | 0.6 | 7263.5 | CH3C(O)C(O)CH3 (g) + CH3CH3 (g) → 2 CH3C(O)CH3 (g)  | ΔrH°(0 K) = -5.18 ± 0.9 kcal/mol | Ruscic W1RO | 0.5 | 7291.1 | CH3CH2C(O)CH3 (cr,l) + 11/2 O2 (g) → 4 CO2 (g) + 4 H2O (cr,l)  | ΔrH°(298.15 K) = -584.15 ± 0.27 kcal/mol | Sinke 1965 | 0.5 | 2142.7 | C (graphite) + O2 (g) → CO2 (g)  | ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/mol | Hawtin 1966, note CO2e |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3C(O)CH3 (cr,l) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 99.8 | Acetone | CH3C(O)CH3 (g) | | -199.99 | -216.93 | ± 0.26 | kJ/mol | 58.0791 ± 0.0025 | 67-64-1*0 | 95.2 | 2-Propanol | CH3CH(OH)CH3 (g) | | -248.66 | -272.76 | ± 0.26 | kJ/mol | 60.0950 ± 0.0025 | 67-63-0*0 | 92.6 | 2-Propanol | CH3CH(OH)CH3 (cr,l) | | -305.39 | -318.20 | ± 0.27 | kJ/mol | 60.0950 ± 0.0025 | 67-63-0*500 | 35.5 | Acetylium | [CH3CO]+ (g) | | 666.65 | 659.36 | ± 0.42 | kJ/mol | 43.0441 ± 0.0016 | 15762-07-9*0 | 29.8 | 2,3-Butanedione | CH3C(O)C(O)CH3 (g) | | -310.75 | -327.32 | ± 0.62 | kJ/mol | 86.0892 ± 0.0033 | 431-03-8*0 | 28.5 | 1-Methylethoxy | CH3CH(O)CH3 (g) | | -25.12 | -43.89 | ± 0.74 | kJ/mol | 59.0871 ± 0.0025 | 3958-66-5*0 | 28.5 | Carbonic acid | C(O)(OH)2 (aq, undissoc) | | | -698.665 | ± 0.028 | kJ/mol | 62.0248 ± 0.0012 | 463-79-6*1000 | 27.6 | Acetaldehyde | CH3CHO (g) | | -154.95 | -165.48 | ± 0.22 | kJ/mol | 44.0526 ± 0.0017 | 75-07-0*0 | 27.1 | Acetaldehyde cation | [CH3CHO]+ (g) | | 832.04 | 822.06 | ± 0.23 | kJ/mol | 44.0520 ± 0.0017 | 36505-03-0*0 | 27.1 | Water | H2O (cr,l) | | -286.270 | -285.798 | ± 0.022 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*500 |
|
Most Influential reactions involving CH3C(O)CH3 (cr,l)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.375 | 7100.8 | CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g)  | ΔrG°(313.81 K) = 1.552 ± 0.020 kJ/mol | Taylor 1900, 3rd Law | 0.375 | 7100.12 | CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g)  | ΔrG°(297.65 K) = 3.032 ± 0.020 kJ/mol | Boublik 1972, 3rd Law, est unc | 0.240 | 7100.6 | CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g)  | ΔrG°(298.60 K) = 2.973 ± 0.025 kJ/mol | Taylor 1900, 3rd Law | 0.003 | 7100.10 | CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g)  | ΔrG°(226.61 K) = 10.362 ± 0.041 (×5.076) kJ/mol | Drucker 1915, 3rd Law | 0.003 | 7091.1 | CH3C(O)CH3 (cr,l) + H2 (g) → CH3CH(OH)CH3 (cr,l)  | ΔrH°(298.15 K) = -16.43 ± 0.24 (×1.756) kcal/mol | Wiberg 1991 | 0.000 | 7099.1 | CH3C(O)CH3 (cr,l) + 4 O2 (g) → 3 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(293 K) = -429.9 ± 2.1 kcal/mol | Emery 1911, est unc | 0.000 | 7100.2 | CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g)  | ΔrH°(298.15 K) = 31.27 ± 0.16 (×3.084) kJ/mol | Majer 1985 | 0.000 | 7100.4 | CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g)  | ΔrH°(298.15 K) = 31.3 ± 0.5 (×1.044) kJ/mol | Ambrose 1975, est unc | 0.000 | 7100.11 | CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g)  | ΔrH°(297.65 K) = 31.34 ± 0.38 (×1.414) kJ/mol | Boublik 1972, 2nd Law, est unc | 0.000 | 7101.6 | CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g)  | ΔrH°(329.65 K) = 7.096 ± 0.072 (×1.795) kcal/mol | Collins 1949 | 0.000 | 7101.1 | CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g)  | ΔrH°(300.42 K) = 7.458 ± 0.008 (×16.35) kcal/mol | Pennington 1957, note unc | 0.000 | 7101.3 | CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g)  | ΔrH°(329.28 K) = 7.107 ± 0.018 (×7.661) kcal/mol | Pennington 1957, note unc | 0.000 | 7100.3 | CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g)  | ΔrH°(298.15 K) = 30.84 ± 0.60 kJ/mol | Della Gatta 1981 | 0.000 | 7101.2 | CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g)  | ΔrH°(317.90 K) = 7.256 ± 0.013 (×11.07) kcal/mol | Pennington 1957, note unc | 0.000 | 7101.4 | CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g)  | ΔrH°(337.94 K) = 7.011 ± 0.023 (×6.442) kcal/mol | Pennington 1957, note unc | 0.000 | 7101.5 | CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g)  | ΔrH°(345.03 K) = 6.921 ± 0.028 (×5.301) kcal/mol | Pennington 1957, note unc | 0.000 | 7100.7 | CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g)  | ΔrH°(313.81 K) = 30.73 ± 0.41 (×1.874) kJ/mol | Taylor 1900, 2nd Law | 0.000 | 7099.2 | CH3C(O)CH3 (cr,l) + 4 O2 (g) → 3 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -427 ± 4 kcal/mol | Delepine 1900, Miles 1941, Kharasch 1929, est unc | 0.000 | 7100.13 | CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g)  | ΔrH°(293.15 K) = 31.89 ± 0.13 (×6.583) kJ/mol | Belousov 1964, ThermoData 2004 | 0.000 | 7100.9 | CH3C(O)CH3 (cr,l) → CH3C(O)CH3 (g)  | ΔrH°(226.61 K) = 34.85 ± 1.07 kJ/mol | Drucker 1915, 2nd Law |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.140 of the Thermochemical Network (2024); available at ATcT.anl.gov |
4
|
|
J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021)
[DOI: 10.1063/5.0069322]
|
5
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
6
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|