Selected ATcT [1, 2] enthalpy of formation based on version 1.140 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.130 to fully include the highest-level electronic structure computations described in reference [4].

Difluorochlorobromomethane

Formula: CF2ClBr (g)
CAS RN: 353-59-3
ATcT ID: 353-59-3*0
SMILES: FC(F)(Cl)Br
SMILES: C(F)(F)(Cl)Br
InChI: InChI=1S/CBrClF2/c2-1(3,4)5
InChIKey: MEXUFEQDCXZEON-UHFFFAOYSA-N
Hills Formula: C1Br1Cl1F2

2D Image:

FC(F)(Cl)Br
Aliases: CF2ClBr; Difluorochlorobromomethane; Bromo(chloro)difluoromethane; Difluorobromochloromethane; Chlorobromodifluoromethane; Bromochlorodifluoromethane; Chlorodifluorobromomethane; Bromodifluorochloromethane; Difluoromonochloromonobromomethane; Difluoromonobromomonochloromethane; Monochloromonobromodifluoromethane; Monobromomonochlorodifluoromethane; Monochlorodifluoromonobromomethane; Monobromodifluoromonochloromethane; Methane difluoride chloride bromide; Methane difluoride bromide chloride; Methane chloride bromide difluoride; Methane bromide chloride difluoride; Methane chloride difluoride bromide; Methane bromide difluoride chloride; Methane difluoride monochloride monobromide; Methane difluoride monobromide monochloride; Methane monochloride monobromide difluoride; Methane monobromide monochloride difluoride; Methane monochloride difluoride monobromide; Methane monobromide difluoride monochloride; Difluorochlorobromocarbon; Difluorobromochlorocarbon; Chlorobromodifluorocarbon; Bromochlorodifluorocarbon; Chlorodifluorobromocarbon; Bromodifluorochlorocarbon; Difluoromonochloromonobromocarbon; Difluoromonobromomonochlorocarbon; Monochloromonobromodifluorocarbon; Monobromomonochlorodifluorocarbon; Monochlorodifluoromonobromocarbon; Monobromodifluoromonochlorocarbon; Carbon difluoride chloride bromide; Carbon difluoride bromide chloride; Carbon chloride bromide difluoride; Carbon bromide chloride difluoride; Carbon chloride difluoride bromide; Carbon bromide difluoride chloride; Carbon difluoride monochloride monobromide; Carbon difluoride monobromide monochloride; Carbon monochloride monobromide difluoride; Carbon monobromide monochloride difluoride; Carbon monochloride difluoride monobromide; Carbon monobromide difluoride monochloride; Flugex 12B1; Fluorocarbon 1211; Freon 12B1; Freon 12V1; Halon 1211; R 12 B1; UN 1974; BCF
Relative Molecular Mass: 165.3642 ± 0.0016

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-428.9-439.9± 4.9kJ/mol

3D Image of CF2ClBr (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CF2ClBr (g)

The 2 contributors listed below account for 99.9% of the provenance of ΔfH° of CF2ClBr (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
53.56219.4 CF2ClBr (g) → C (g) + 2 F (g) Cl (g) Br (g) ΔrH°(0 K) = 365.48 ± 1.60 kcal/molRuscic G4
46.36219.3 CF2ClBr (g) → C (g) + 2 F (g) Cl (g) Br (g) ΔrH°(0 K) = 367.12 ± 1.72 kcal/molRuscic G3X

Top 10 species with enthalpies of formation correlated to the ΔfH° of CF2ClBr (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
1.1 Bromine atomBr (g)[Br]117.925111.863± 0.055kJ/mol79.90400 ±
0.00100
10097-32-2*0
1.1 Bromine atomBr (g, 2P3/2)[Br]117.925111.863± 0.055kJ/mol79.90400 ±
0.00100
10097-32-2*1
1.1 Bromine atomBr (g, 2P1/2)[Br]162.010155.947± 0.055kJ/mol79.90400 ±
0.00100
10097-32-2*2
1.1 DibromineBr2 (g)BrBr45.7030.90± 0.11kJ/mol159.8080 ±
0.0020
7726-95-6*0
1.1 BromideBr- (g)[Br-]-206.612-212.674± 0.055kJ/mol79.90455 ±
0.00100
24959-67-9*0
1.1 BromanyliumBr+ (g)[Br+]1257.7861251.723± 0.056kJ/mol79.90345 ±
0.00100
22541-56-6*0
1.0 BromochloraneBrCl (g)ClBr21.89114.447± 0.059kJ/mol115.3567 ±
0.0013
13863-41-7*0

Most Influential reactions involving CF2ClBr (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.5366219.4 CF2ClBr (g) → C (g) + 2 F (g) Cl (g) Br (g) ΔrH°(0 K) = 365.48 ± 1.60 kcal/molRuscic G4
0.4636219.3 CF2ClBr (g) → C (g) + 2 F (g) Cl (g) Br (g) ΔrH°(0 K) = 367.12 ± 1.72 kcal/molRuscic G3X


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.140 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.