Selected ATcT [1, 2] enthalpy of formation based on version 1.140 of the Thermochemical Network [3]

This version of ATcT results[3] was generated by additional expansion of version 1.130 to fully include the highest-level electronic structure computations described in reference [4].

1,1,1-Trichloroethane

Formula: CH3CCl3 (l)
CAS RN: 71-55-6
ATcT ID: 71-55-6*500
SMILES: CC(Cl)(Cl)Cl
InChI: InChI=1S/C2H3Cl3/c1-2(3,4)5/h1H3
InChIKey: UOCLXMDMGBRAIB-UHFFFAOYSA-N
Hills Formula: C2H3Cl3

2D Image:

CC(Cl)(Cl)Cl
Aliases: CH3CCl3; 1,1,1-Trichloroethane; alpha-Trichloroethane; Methyltrichloromethane; Methyl chloroform; HCC 140a; CCl3CH3
Relative Molecular Mass: 133.4033 ± 0.0031

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-183.87-177.23± 0.52kJ/mol

Top contributors to the provenance of ΔfH° of CH3CCl3 (l)

The 20 contributors listed below account only for 71.6% of the provenance of ΔfH° of CH3CCl3 (l).
A total of 72 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
24.35890.2 CH3CCl3 (l) + 2 O2 (g) → 2 CO2 (g) + 3 HCl (aq, 600 H2O) ΔrH°(298.15 K) = -264.83 ± 0.19 (×1.297) kcal/molHu 1972
12.95958.1 CH2CCl2 (g) HCl (g) → CH3CCl3 (g) ΔrG°(373.65 K) = 2.33 ± 0.45 kJ/molHu 1972, 3rd Law, est unc
6.35960.2 CH2CCl2 (l) + 2 O2 (g) → 2 CO2 (g) + 2 HCl (aq, 600 H2O) ΔrH°(298.15 K) = -261.90 ± 0.30 kcal/molSinke 1958, Cox 1970, Manion 2002
5.25960.1 CH2CCl2 (l) + 2 O2 (g) → 2 CO2 (g) + 2 HCl (aq, 600 H2O) ΔrH°(298.15 K) = -1095.94 ± 1.38 kJ/molMansson 1971
3.55886.4 CH3CCl3 (g) → CCl3CCl3 (g) CH3CH3 (g) ΔrH°(0 K) = 13.43 ± 0.9 kcal/molRuscic W1RO
3.45889.1 CH3CCl3 (l) → CH3CCl3 (g) ΔrH°(298.15 K) = 32.62 ± 0.14 kJ/molMajer 1985
2.75890.3 CH3CCl3 (l) + 2 O2 (g) → 2 CO2 (g) + 3 HCl (aq, 600 H2O) ΔrH°(298.15 K) = -1112.09 ± 1.28 (×2.378) kJ/molMansson 1971
1.75896.1 CH2ClCHCl2 (l) → CH3CCl3 (l) ΔrH°(423 K) = 8.7 ± 1.7 kJ/molLevanova 1975, Levanova 1975a, Manion 2002, 2nd Law
1.35977.4 CCl2CCl2 (g) CH2CH2 (g) → 2 CH2CCl2 (g) ΔrH°(0 K) = -5.63 ± 0.85 kcal/molRuscic W1RO
1.15977.2 CCl2CCl2 (g) CH2CH2 (g) → 2 CH2CCl2 (g) ΔrH°(0 K) = -4.75 ± 0.90 kcal/molRuscic G4
1.15977.1 CCl2CCl2 (g) CH2CH2 (g) → 2 CH2CCl2 (g) ΔrH°(0 K) = -4.83 ± 0.90 kcal/molRuscic G3X
1.05908.4 CHCl2CCl3 (g) → 2 C (g) H (g) + 5 Cl (g) ΔrH°(0 K) = 569.65 ± 1.50 kcal/molRuscic W1RO
0.95908.2 CHCl2CCl3 (g) → 2 C (g) H (g) + 5 Cl (g) ΔrH°(0 K) = 572.10 ± 1.60 kcal/molRuscic G4
0.95977.3 CCl2CCl2 (g) CH2CH2 (g) → 2 CH2CCl2 (g) ΔrH°(0 K) = -4.73 ± 1.00 kcal/molRuscic CBS-n
0.95887.4 CH3CCl3 (g) CH3CH3 (g) → CH3CHCl2 (g) CH3CH2Cl (g) ΔrH°(0 K) = -4.50 ± 0.9 (×1.091) kcal/molRuscic W1RO
0.85887.2 CH3CCl3 (g) CH3CH3 (g) → CH3CHCl2 (g) CH3CH2Cl (g) ΔrH°(0 K) = -2.95 ± 1.0 kcal/molRuscic G4
0.75887.1 CH3CCl3 (g) CH3CH3 (g) → CH3CHCl2 (g) CH3CH2Cl (g) ΔrH°(0 K) = -2.63 ± 1.1 kcal/molRuscic G3X
0.75888.4 CH3CCl3 (g) CH3CH2Cl (g) → 2 CH3CHCl2 (g) ΔrH°(0 K) = -3.18 ± 0.9 (×1.044) kcal/molRuscic W1RO
0.65903.4 CH2ClCCl3 (g) CH3CH3 (g) → CH3CH2Cl (g) CH3CCl3 (g) ΔrH°(0 K) = -4.71 ± 0.9 kcal/molRuscic W1RO
0.65909.4 CHCl2CCl3 (g) CH3CH2Cl (g) → 2 CH3CCl3 (g) ΔrH°(0 K) = -4.91 ± 0.9 kcal/molRuscic W1RO

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3CCl3 (l)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
96.3 1,1,1-TrichloroethaneCH3CCl3 (g)CC(Cl)(Cl)Cl-134.01-144.59± 0.51kJ/mol133.4033 ±
0.0031
71-55-6*0
65.8 1,1-DichloroetheneCH2CCl2 (g)C=C(Cl)Cl9.273.28± 0.50kJ/mol96.9427 ±
0.0024
75-35-4*0
63.3 1,1-DichloroetheneCH2CCl2 (l)C=C(Cl)Cl-23.47± 0.51kJ/mol96.9427 ±
0.0024
75-35-4*500
57.9 trans-1,2-DichloroetheneCHClCHCl (g, trans)C(\Cl)=C/Cl5.620.20± 0.55kJ/mol96.9427 ±
0.0024
156-60-5*0
57.8 1,2-DichloroetheneCHClCHCl (g)C(Cl)=CCl3.79-1.53± 0.55kJ/mol96.9427 ±
0.0024
540-59-0*0
57.8 cis-1,2-DichloroetheneCHClCHCl (g, cis)C(\Cl)=C\Cl3.79-2.21± 0.55kJ/mol96.9427 ±
0.0024
156-59-2*0
34.8 PentachloroethaneCHCl2CCl3 (g)C(C(Cl)(Cl)Cl)(Cl)Cl-150.5-156.5± 1.9kJ/mol202.2928 ±
0.0048
76-01-7*0
26.5 1,1,2-TrichloroethaneCH2ClCHCl2 (l)C(Cl)C(Cl)Cl-187.6± 1.1kJ/mol133.4033 ±
0.0031
79-00-5*500
26.4 1,1,2-TrichloroethaneCH2ClCHCl2 (g)C(Cl)C(Cl)Cl-135.7-147.3± 1.1kJ/mol133.4033 ±
0.0031
79-00-5*0
24.3 TetrachloroetheneCCl2CCl2 (g)C(Cl)(Cl)=C(Cl)(Cl)-20.58-21.45± 0.99kJ/mol165.8322 ±
0.0039
127-18-4*0

Most Influential reactions involving CH3CCl3 (l)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9825889.1 CH3CCl3 (l) → CH3CCl3 (g) ΔrH°(298.15 K) = 32.62 ± 0.14 kJ/molMajer 1985
0.4045896.1 CH2ClCHCl2 (l) → CH3CCl3 (l) ΔrH°(423 K) = 8.7 ± 1.7 kJ/molLevanova 1975, Levanova 1975a, Manion 2002, 2nd Law
0.2495890.2 CH3CCl3 (l) + 2 O2 (g) → 2 CO2 (g) + 3 HCl (aq, 600 H2O) ΔrH°(298.15 K) = -264.83 ± 0.19 (×1.297) kcal/molHu 1972
0.0285890.3 CH3CCl3 (l) + 2 O2 (g) → 2 CO2 (g) + 3 HCl (aq, 600 H2O) ΔrH°(298.15 K) = -1112.09 ± 1.28 (×2.378) kJ/molMansson 1971


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.140 of the Thermochemical Network (2024); available at ATcT.anl.gov
4   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
5   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
6   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [5] and Ruscic and Bross[6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.