Selected ATcT [1, 2] enthalpy of formation based on version 1.128 of the Thermochemical Network [3]

This version of ATcT results[4] was generated by additional expansion of version 1.124 [5,6] to include new species relevant in the ring opening mechanism of cyclopropyl radical and cation.

Sulfanyl

Formula: SH (g)
CAS RN: 13940-21-1
ATcT ID: 13940-21-1*0
SMILES: [SH]
InChI: InChI=1S/HS/h1H
InChIKey: PXQLVRUNWNTZOS-UHFFFAOYSA-N
Hills Formula: H1S1

2D Image:

[SH]
Aliases: SH; Sulfanyl; Mercapto; Mercapto radical; Thiohydroxyl; Sulfhydryl; Sulfide radical; Hydrogen monosulfide; Monohydrogen sulfide; Monohydrogen monosulfide; Hydrogen sulfide; Sulfur monohydride; Sulfur hydride; Hydrosulfur
Relative Molecular Mass: 33.0739 ± 0.0060

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
142.86143.31± 0.19kJ/mol

3D Image of SH (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of SH (g)

The 20 contributors listed below account only for 88.5% of the provenance of ΔfH° of SH (g).
A total of 22 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
22.98807.1 999 H2S (g) + 999 O2 (g) → 728 OSO (g) + 272 S (cr,l) + 999 H2O (cr,l) ΔrH°(298.15 K) = -115042 ± 60 kcal/molKapustinskii 1958
15.38716.1 S (cr,l) O2 (g) → OSO (g) ΔrH°(298.15 K) = -296.847 ± 0.200 kJ/molEckman 1929, note SO2
9.88813.1 SH (g) → H (g) S (g) ΔrH°(0 K) = 29245 ± 25 cm-1Zhou 2005
8.48835.1 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O) ΔrH°(298.15 K) = -143.85 ± 0.06 kcal/molGood 1960, CODATA Key Vals
4.78835.2 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O) ΔrH°(298.15 K) = -143.92 ± 0.07 (×1.139) kcal/molMansson 1963, CODATA Key Vals
3.08701.2 S (cr,l) → S2 (g) ΔrG°(570 K) = 9.483 ± 0.138 (×1.719) kcal/molDrowart 1968, Detry 1967, 3rd Law
3.08709.11 S2 (g) + 2 H2O (g) → O2 (g) + 2 H2S (g) ΔrH°(0 K) = 75.51 ± 0.25 kcal/molFeller 2008
3.08709.10 S2 (g) + 2 H2O (g) → O2 (g) + 2 H2S (g) ΔrH°(0 K) = 75.40 ± 0.25 kcal/molKarton 2006, Karton 2011
2.18809.1 H2S (g) + 3/2 O2 (g) → OSO (g) H2O (cr,l) ΔrH°(298.15 K) = -134.24 ± 0.16 kcal/molKapustinskii 1958
2.18834.1 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 70 H2O) ΔrH°(298.15 K) = -143.58 ± 0.09 (×1.325) kcal/molMcCullough 1953, CODATA Key Vals
2.08701.4 S (cr,l) → S2 (g) ΔrG°(600 K) = 8.57 ± 0.29 kcal/molBraune 1951, West 1929, Gurvich TPIS, 3rd Law
1.88735.1 SO (g) → S (g) O (g) ΔrH°(0 K) = 43275 ± 5 cm-1Clerbaux 1994
1.88703.4 S2 (g) + 2 H2 (g) → 2 H2S (g) ΔrG°(1515 K) = -31.42 ± 0.80 (×1.719) kJ/molRandall 1918, Gurvich TPIS, 2nd Law
1.48835.3 S (cr,l) + 3/2 O2 (g) H2O (cr,l) → OS(O)(OH)2 (aq, 115 H2O) ΔrH°(298.15 K) = -143.70 ± 0.07 (×2.044) kcal/molWaddington 1956, Mansson 1963, est unc
1.28814.12 SH (g) → H (g) S (g) ΔrH°(0 K) = 83.69 ± 0.20 kcal/molFeller 2008
1.28800.13 H2S (g) → 2 H (g) S (g) ΔrH°(0 K) = 173.54 ± 0.20 kcal/molFeller 2008
1.18709.9 S2 (g) + 2 H2O (g) → O2 (g) + 2 H2S (g) ΔrH°(0 K) = 75.57 ± 0.40 kcal/molKarton 2011
1.08808.1 H2S (g) + 1/2 O2 (g) → S (cr,l) H2O (cr,l) ΔrH°(298.15 K) = -63.66 ± 0.42 kcal/molKapustinskii 1958
0.98812.3 H2S (g) → H2 (g) S+ (g) ΔrH°(0 K) = 13.40 ± 0.01 eVDibeler 1968a
0.98812.2 H2S (g) → H2 (g) S+ (g) ΔrH°(0 K) = 13.41 ± 0.01 eVEland 1979, Jones 1972, est unc

Top 10 species with enthalpies of formation correlated to the ΔfH° of SH (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
100.0 Hydrosulfide[SH]- (g)[SH-]-80.48-80.48± 0.19kJ/mol33.0745 ±
0.0060
15035-72-0*0
99.4 Hydrogen sulfideH2S (g)S-17.32-20.24± 0.18kJ/mol34.0819 ±
0.0060
7783-06-4*0
98.9 Sulfoniumyl[H2S]+ (g)[SH2+]992.71989.80± 0.19kJ/mol34.0813 ±
0.0060
26453-60-1*0
98.0 Sulfanylium[SH]+ (g)[SH+]1148.411148.41± 0.19kJ/mol33.0734 ±
0.0060
12273-42-6*0
64.6 Monosulfur anionS- (g)[S-]76.4878.53± 0.14kJ/mol32.0665 ±
0.0060
14337-03-2*0
64.6 SulfurS (g)[S]276.89279.13± 0.14kJ/mol32.0660 ±
0.0060
7704-34-9*0
64.5 Monosulfur cationS+ (g)[S+]1276.481278.26± 0.14kJ/mol32.0655 ±
0.0060
14701-12-3*0
64.5 DisulfurS2 (g)S=S127.48127.79± 0.27kJ/mol64.1320 ±
0.0120
23550-45-0*0
63.5 Sulfur atom dication[S]+2 (g)[S++]3528.243531.93± 0.14kJ/mol32.0649 ±
0.0060
14127-58-3*0
62.3 Sulfur monoxideSO (g)S=O6.026.06± 0.13kJ/mol48.0654 ±
0.0060
13827-32-2*0

Most Influential reactions involving SH (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.0008816.1 [SH]- (g) → SH (g) ΔrH°(0 K) = 18669.543 ± 0.012 cm-1Chaibi 2006
0.9998815.1 SH (g) → [SH]+ (g) ΔrH°(0 K) = 84057.5 ± 3 cm-1Hsu 1994, Milan 1996, as quoted by NIST WebBook
0.2158813.1 SH (g) → H (g) S (g) ΔrH°(0 K) = 29245 ± 25 cm-1Zhou 2005
0.0278814.12 SH (g) → H (g) S (g) ΔrH°(0 K) = 83.69 ± 0.20 kcal/molFeller 2008
0.0198814.13 SH (g) → H (g) S (g) ΔrH°(0 K) = 349.53 ± 1.00 kJ/molCsaszar 2003a, note unc
0.0138813.2 SH (g) → H (g) S (g) ΔrH°(0 K) = 29300 ± 100 cm-1Morley 1993
0.0128814.11 SH (g) → H (g) S (g) ΔrH°(0 K) = 83.71 ± 0.30 kcal/molKarton 2011
0.0088814.14 SH (g) → H (g) S (g) ΔrH°(0 K) = 349.9 ± 1.5 kJ/molPeebles 2002, est unc
0.0078823.2 H2S (g) Br (g) → SH (g) HBr (g) ΔrG°(370 K) = 2.68 ± 0.33 kcal/molNicovich 1992, 3rd Law
0.0068822.3 H2S (g) → H (g) SH (g) ΔrH°(0 K) = 31430 ± 20 cm-1Cook 2001
0.0058823.1 H2S (g) Br (g) → SH (g) HBr (g) ΔrH°(370 K) = 3.54 ± 0.23 (×1.719) kcal/molNicovich 1992, 2nd Law
0.0058819.1 1/2 H2 (g) S (g) → SH (g) ΔrH°(0 K) = -134.42 ± 1.9 kJ/molNagy 2011
0.0038814.10 SH (g) → H (g) S (g) ΔrH°(0 K) = 83.70 ± 0.56 kcal/molKarton 2011
0.0028813.7 SH (g) → H (g) S (g) ΔrH°(0 K) = 3.62 ± 0.03 eVContinetti 1991a
0.0018822.1 H2S (g) → H (g) SH (g) ΔrH°(0 K) = 31480 ± 40 cm-1Schnieder 1990
0.0018822.2 H2S (g) → H (g) SH (g) ΔrH°(0 K) = 31440 ± 40 cm-1Wilson 1996, note unc2
0.0018814.15 SH (g) → H (g) S (g) ΔrH°(0 K) = 29414 ± 300 cm-1Resende 2001
0.0008814.9 SH (g) → H (g) S (g) ΔrH°(0 K) = 83.67 ± 1.35 kcal/molKarton 2011
0.0008814.8 SH (g) → H (g) S (g) ΔrH°(0 K) = 83.70 ± 1.39 kcal/molParthiban 2001
0.0008822.12 H2S (g) → H (g) SH (g) ΔrH°(0 K) = 89.85 ± 0.20 kcal/molFeller 2008


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.128 of the Thermochemical Network. Argonne National Laboratory, Lemont, Illinois 2023; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1997230]
4   N. Genossar, P. B. Changala, B. Gans, J.-C. Loison, S. Hartweg, M.-A. Martin-Drumel, G. A. Garcia, J. F. Stanton, B. Ruscic, and J. H. Baraban
Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation
J. Am. Chem. Soc. 144, 18518-18525 (2022) [DOI: 10.1021/jacs.2c07740]
5   B. Ruscic and D. H. Bross
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046]
6   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
8   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.