Selected ATcT [1, 2] enthalpy of formation based on version 1.128 of the Thermochemical Network [3]

This version of ATcT results[4] was generated by additional expansion of version 1.124 [5,6] to include new species relevant in the ring opening mechanism of cyclopropyl radical and cation.

Nitrosyl ion

Formula: [NO]+ (g)
CAS RN: 14452-93-8
ATcT ID: 14452-93-8*0
SMILES: N#[O+]
InChI: InChI=1S/NO/c1-2/q+1
InChIKey: KEJOCWOXCDWNID-UHFFFAOYSA-N
Hills Formula: N1O1+

2D Image:

N#[O+]
Aliases: [NO]+; Nitrosyl ion; Nitrilooxonium; Nitrosyl cation; Nitrosyl ion (1+); Nitric oxide cation; Nitric oxide ion (1+); Nitrogen monoxide cation; Nitrogen monoxide ion (1+)
Relative Molecular Mass: 30.00559 ± 0.00031

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
984.507984.502± 0.066kJ/mol

3D Image of [NO]+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [NO]+ (g)

The 20 contributors listed below account only for 82.1% of the provenance of ΔfH° of [NO]+ (g).
A total of 45 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
23.71459.1 NO (g) → N (g) O (g) ΔrH°(0 K) = 52400 ± 10 cm-1Callear 1970
23.71459.2 NO (g) → N (g) O (g) ΔrH°(0 K) = 52400 ± 10 cm-1Dingle 1975
13.51459.4 NO (g) → N (g) O (g) ΔrH°(0 K) = 52408 ± 10 (×1.325) cm-1Kley 1973, Miescher 1974, est unc
3.61459.3 NO (g) → N (g) O (g) ΔrH°(0 K) = 52420 ± 12 (×2.134) cm-1Miescher 1974, Huber 1979
2.51412.3 N2 (g) → N+ (g) N (g) ΔrH°(0 K) = 24.2880 ± 0.0009 eVTang 2005
2.01412.2 N2 (g) → N+ (g) N (g) ΔrH°(0 K) = 24.2883 ± 0.0010 eVTang 2005
2.01412.1 N2 (g) → N+ (g) N (g) ΔrH°(0 K) = 24.2888 ± 0.0010 eVTang 2005
1.91696.3 (NH4)NO3 (cr,l) → N2 (g) + 1/2 O2 (g) + 2 H2O (cr,l) ΔrH°(293.65 K) = -49.44 ± 0.06 kcal/molBecker 1934
1.01462.4 NO (g) → N (g) O (g) ΔrH°(0 K) = 626.47 ± 0.56 kJ/molHarding 2008
0.81461.10 NO (g) → N (g) O (g) ΔrH°(0 K) = 149.82 ± 0.15 kcal/molKarton 2007a, Karton 2008
0.81391.11 N2 (g) → 2 N (g) ΔrH°(0 K) = 941.14 ± 0.15 kJ/molThorpe 2021
0.71459.6 NO (g) → N (g) O (g) ΔrH°(0 K) = 6.503 ± 0.004 (×1.719) eVBrewer 1956, Frisch 1965
0.71460.10 NO (g) → N (g) O (g) ΔrH°(0 K) = 149.78 ± 0.16 kcal/molFeller 2014
0.71923.4 HNO (g) → H (g) N (g) O (g) ΔrH°(0 K) = 823.10 ± 0.56 kJ/molHarding 2008
0.61462.2 NO (g) → N (g) O (g) ΔrH°(0 K) = 626.74 ± 0.70 kJ/molHarding 2008
0.61474.1 1/2 N2 (g) + 1/2 O2 (g) → NO (g) ΔrH°(0 K) = 90.0 ± 0.8 kJ/molSzakacs 2011
0.61930.4 HNO (g) → H (g) NO (g) ΔrH°(0 K) = 16450 ± 10 cm-1Dixon 1981, Dixon 1984, Dixon 1996
0.61462.3 NO (g) → N (g) O (g) ΔrH°(0 K) = 626.13 ± 0.74 kJ/molHarding 2008
0.61462.1 NO (g) → N (g) O (g) ΔrH°(0 K) = 626.22 ± 0.75 kJ/molTajti 2004, est unc
0.42005.1 ONO (g) + 1/2 O2 (g) H2O (g) → 2 HON(O)O (g) ΔrG°(371 K) = -6.04 ± 0.63 kJ/molJones 1943, 3rd Law

Top 10 species with enthalpies of formation correlated to the ΔfH° of [NO]+ (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.8 Nitric oxideNO (g)[N]=O90.63991.143± 0.066kJ/mol30.00614 ±
0.00031
10102-43-9*0
99.7 Nitrogen dioxideONO (g)O=[N]=O36.87834.071± 0.066kJ/mol46.00554 ±
0.00060
10102-44-0*0
97.1 Dinitrogen tetraoxideO2NNO2 (g)O=N(=O)N(=O)=O20.1910.90± 0.14kJ/mol92.0111 ±
0.0012
10544-72-6*0
96.5 Nitrosyl chlorideClNO (g)ClN=O54.47452.572± 0.068kJ/mol65.45884 ±
0.00095
2696-92-6*0
94.3 DioxohydrazineONNO (g)O=NN=O172.93171.17± 0.14kJ/mol60.01228 ±
0.00062
16824-89-8*0
94.3 DioxohydrazineONNO (g, cis)O=NN=O172.93171.17± 0.14kJ/mol60.01228 ±
0.00062
16824-89-8*2
90.0 Nitrogen sesquioxideONN(O)O (g)O=N-[N](=O)[O]90.7686.19± 0.15kJ/mol76.01168 ±
0.00091
10544-73-7*0
83.0 Nitrous acidHONO (g)N(=O)O-72.971-78.627± 0.079kJ/mol47.01348 ±
0.00061
7782-77-6*0
83.0 Nitrous acidHONO (g, trans)N(=O)O-72.971-79.114± 0.079kJ/mol47.01348 ±
0.00061
7782-77-6*1
71.0 Dinitrogen tetraoxideO2NNO2 (cr,l)O=N(=O)N(=O)=O-37.82-26.97± 0.19kJ/mol92.0111 ±
0.0012
10544-72-6*500

Most Influential reactions involving [NO]+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.5841463.2 NO (g) → [NO]+ (g) ΔrH°(0 K) = 74721.7 ± 0.4 cm-1Reiser 1988
0.3741463.5 NO (g) → [NO]+ (g) ΔrH°(0 K) = 74721.5 ± 0.5 cm-1Miescher 1976
0.0201424.4 [NNN]+ (g) [CO]+ (g) [O2]+ (g) → [CO2]+ (g) [N2]+ (g) [NO]+ (g) ΔrH°(0 K) = -118.33 ± 1.50 kcal/molRuscic W1RO
0.0181463.6 NO (g) → [NO]+ (g) ΔrH°(0 K) = 74719.3 ± 2 (×1.114) cm-1Seaver 1983
0.0171424.2 [NNN]+ (g) [CO]+ (g) [O2]+ (g) → [CO2]+ (g) [N2]+ (g) [NO]+ (g) ΔrH°(0 K) = -119.70 ± 1.60 kcal/molRuscic G4
0.0171424.3 [NNN]+ (g) [CO]+ (g) [O2]+ (g) → [CO2]+ (g) [N2]+ (g) [NO]+ (g) ΔrH°(0 K) = -120.61 ± 1.60 kcal/molRuscic CBS-n
0.0151424.1 [NNN]+ (g) [CO]+ (g) [O2]+ (g) → [CO2]+ (g) [N2]+ (g) [NO]+ (g) ΔrH°(0 K) = -119.94 ± 1.72 kcal/molRuscic G3X
0.0141463.3 NO (g) → [NO]+ (g) ΔrH°(0 K) = 74719.0 ± 0.5 (×5.076) cm-1Sander 1987
0.0051947.1 [NOH]+ (g) → H (g) [NO]+ (g) ΔrH°(0 K) = 1784 ± 700 (×2.181) cm-1Ben Houria 2001, est unc
0.0031463.4 NO (g) → [NO]+ (g) ΔrH°(0 K) = 74717.2 ± 5 cm-1Muller-Dethlefs 1984
0.0031463.1 NO (g) → [NO]+ (g) ΔrH°(0 K) = 74720 ± 5 cm-1Jungen 1969
0.0011946.1 [HNO]+ (g) → H (g) [NO]+ (g) ΔrH°(0 K) = 7590 ± 700 (×2.089) cm-1Ben Houria 2001, est unc
0.0006899.3 C6H5F (g) [NO]+ (g) → [C6H5F]+ (g) NO (g) ΔrG°(350 K) = -3.34 ± 0.5 kcal/molLias 1978, 3rd Law, est unc
0.0006899.2 C6H5F (g) [NO]+ (g) → [C6H5F]+ (g) NO (g) ΔrH°(350 K) = -1.35 ± 0.5 kcal/molLias 1978, 2nd Law, est unc
0.0006899.1 C6H5F (g) [NO]+ (g) → [C6H5F]+ (g) NO (g) ΔrG°(350 K) = -3.74 ± 0.5 (×1.325) kcal/molLias 1978, 3rd Law, est unc
0.0001466.8 [NO]+ (g) → N (g) O (g) ΔrH°(0 K) = -64.20 ± 1.50 kcal/molRuscic W1RO
0.0001466.7 [NO]+ (g) → N (g) O (g) ΔrH°(0 K) = -63.53 ± 1.60 kcal/molRuscic CBS-n
0.0001463.8 NO (g) → [NO]+ (g) ΔrH°(0 K) = 9.267 ± 0.005 eVPeatman 1969
0.0001463.7 NO (g) → [NO]+ (g) ΔrH°(0 K) = 9.262 ± 0.010 eVCollin 1968
0.0006899.5 C6H5F (g) [NO]+ (g) → [C6H5F]+ (g) NO (g) ΔrH°(350 K) = -3.25 ± 0.5 (×4.269) kcal/molLias 1978, 2nd Law, est unc


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.128 of the Thermochemical Network. Argonne National Laboratory, Lemont, Illinois 2023; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1997230]
4   N. Genossar, P. B. Changala, B. Gans, J.-C. Loison, S. Hartweg, M.-A. Martin-Drumel, G. A. Garcia, J. F. Stanton, B. Ruscic, and J. H. Baraban
Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation
J. Am. Chem. Soc. 144, 18518-18525 (2022) [DOI: 10.1021/jacs.2c07740]
5   B. Ruscic and D. H. Bross
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046]
6   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
8   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.