Selected ATcT [1, 2] enthalpy of formation based on version 1.128 of the Thermochemical Network [3]

This version of ATcT results[4] was generated by additional expansion of version 1.124 [5,6] to include new species relevant in the ring opening mechanism of cyclopropyl radical and cation.

Biphenyl

Formula: C6H5C6H5 (cr)
CAS RN: 92-52-4
ATcT ID: 92-52-4*520
SMILES: c1ccccc1c2ccccc2
InChI: InChI=1S/C12H10/c1-3-7-11(8-4-1)12-9-5-2-6-10-12/h1-10H
InChIKey: ZUOUZKKEUPVFJK-UHFFFAOYSA-N
Hills Formula: C12H10

2D Image:

c1ccccc1c2ccccc2
Aliases: C6H5C6H5; Biphenyl; 1,1'-Biphenyl; Bibenzene; Diphenyl; Phenylbenzene; 1,1'-Diphenyl; Lemonene; Phenador-X; PhPh; Xenene; Carolid AL; Tetrosin LY; NSC 14916; 1,1-Biphenyl; (C6H5)2
Relative Molecular Mass: 154.2078 ± 0.0096

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
121.697.1± 1.1kJ/mol

Top contributors to the provenance of ΔfH° of C6H5C6H5 (cr)

The 8 contributors listed below account for 92.5% of the provenance of ΔfH° of C6H5C6H5 (cr).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
43.38565.4 C6H5C6H5 (cr,l) + 29/2 O2 (g) → 12 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -1493.38 ± 0.37 kcal/molParks 1951
24.28565.1 C6H5C6H5 (cr,l) + 29/2 O2 (g) → 12 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -6247.89 ± 2.07 kJ/molMontgomery 1978
6.88565.2 C6H5C6H5 (cr,l) + 29/2 O2 (g) → 12 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -1494.20 ± 0.33 (×2.828) kcal/molColeman 1966
6.48565.3 C6H5C6H5 (cr,l) + 29/2 O2 (g) → 12 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -1493.29 ± 0.96 kcal/molMackle 1963
3.78562.5 C6H5C6H5 (g) → 12 C (g) + 10 H (g) ΔrH°(0 K) = 10492.4 ± 5.2 kJ/molKarton 2021
2.78564.2 C6H5C6H5 (g) + 2 CH3 (g) → 2 C6H5 (g) CH3CH3 (g) ΔrH°(0 K) = 31.81 ± 1.3 kcal/molRuscic G4
2.68565.5 C6H5C6H5 (cr,l) + 29/2 O2 (g) → 12 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -1493.4 ± 1.5 kcal/molBrull 1935, Cox 1970
2.68565.6 C6H5C6H5 (cr,l) + 29/2 O2 (g) → 12 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -1493.4 ± 1.5 kcal/molStohmann 1889a, Montgomery 1978

Top 10 species with enthalpies of formation correlated to the ΔfH° of C6H5C6H5 (cr)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
100.0 BiphenylC6H5C6H5 (cr,l)c1ccccc1c2ccccc2121.697.1± 1.1kJ/mol154.2078 ±
0.0096
92-52-4*500
100.0 BiphenylC6H5C6H5 (l)c1ccccc1c2ccccc2113.7± 1.1kJ/mol154.2078 ±
0.0096
92-52-4*590
96.8 BiphenylC6H5C6H5 (g)c1ccccc1c2ccccc2206.9178.8± 1.1kJ/mol154.2078 ±
0.0096
92-52-4*0
15.4 Carbonic acidC(O)(OH)2 (aq, undissoc)OC(=O)O-698.995± 0.028kJ/mol62.0248 ±
0.0012
463-79-6*1000
15.1 Carbon dioxideCO2 (g)C(=O)=O-393.110-393.476± 0.015kJ/mol44.00950 ±
0.00100
124-38-9*0
14.9 Carbon dioxide cation[CO2]+ (g)[C+](=O)=O936.090936.925± 0.017kJ/mol44.00895 ±
0.00100
12181-61-2*0
13.2 Benzoic acidC6H5C(O)OH (cr,l)c1ccc(cc1)C(=O)O-367.31-384.73± 0.17kJ/mol122.1213 ±
0.0056
65-85-0*500
12.8 Succinic acid(CH2C(O)OH)2 (cr,l)OC(=O)CCC(=O)O-918.48-940.21± 0.12kJ/mol118.0880 ±
0.0034
110-15-6*500
11.9 PhenylC6H5 (g)c1cccc[c]1352.11338.75± 0.63kJ/mol77.1039 ±
0.0048
2396-01-2*0
11.8 Carbon dioxideCO2 (aq, undissoc)C(=O)=O-413.196± 0.019kJ/mol44.00950 ±
0.00100
124-38-9*1000

Most Influential reactions involving C6H5C6H5 (cr)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.0008568.1 C6H5C6H5 (cr) → C6H5C6H5 (cr,l) ΔrH°(0 K) = 0 ± 0 cm-1triv
0.9898569.1 C6H5C6H5 (cr) → C6H5C6H5 (l) ΔrH°(342.098 K) = 18.574 ± 0.004 kJ/molChirico 1989
0.7148567.1 C6H5C6H5 (cr) → C6H5C6H5 (g) ΔrH°(298.15 K) = 81.52 ± 0.32 kJ/molChirico 1989, note unc
0.1288567.5 C6H5C6H5 (cr) → C6H5C6H5 (g) ΔrH°(298.15 K) = 19.54 ± 0.18 kcal/molMorawetz 1972, note unc
0.0798567.3 C6H5C6H5 (cr) → C6H5C6H5 (g) ΔrH°(301 K) = 82.5 ± 0.9 (×1.067) kJ/molBradley 1953b, Roux 2008
0.0168567.2 C6H5C6H5 (cr) → C6H5C6H5 (g) ΔrH°(311 K) = 83.3 ± 1.0 (×2.134) kJ/molSasse 1989, Roux 2008
0.0078567.4 C6H5C6H5 (cr) → C6H5C6H5 (g) ΔrH°(319 K) = 80.37 ± 3.20 kJ/molClark 1975, note unc
0.0068569.3 C6H5C6H5 (cr) → C6H5C6H5 (l) ΔrH°(342.2 K) = 18.58 ± 0.05 kJ/molO?Rourke 1983, Roux 2008
0.0048567.8 C6H5C6H5 (cr) → C6H5C6H5 (g) ΔrH°(298.15 K) = 82.9 ± 4 kJ/molChickos 1988, est unc
0.0048569.2 C6H5C6H5 (cr) → C6H5C6H5 (l) ΔrH°(342.4 K) = 18.57 ± 0.06 kJ/molRoux 2008, Montgomery 2018


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.128 of the Thermochemical Network. Argonne National Laboratory, Lemont, Illinois 2023; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1997230]
4   N. Genossar, P. B. Changala, B. Gans, J.-C. Loison, S. Hartweg, M.-A. Martin-Drumel, G. A. Garcia, J. F. Stanton, B. Ruscic, and J. H. Baraban
Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation
J. Am. Chem. Soc. 144, 18518-18525 (2022) [DOI: 10.1021/jacs.2c07740]
5   B. Ruscic and D. H. Bross
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046]
6   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
8   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.