Selected ATcT [1, 2] enthalpy of formation based on version 1.128 of the Thermochemical Network [3] This version of ATcT results[4] was generated by additional expansion of version 1.124 [5,6] to include new species relevant in the ring opening mechanism of cyclopropyl radical and cation.
|
Naphthalene |
Formula: C6H4(C4H4) (cr,l) |
CAS RN: 91-20-3 |
ATcT ID: 91-20-3*500 |
SMILES: c1ccc2ccccc2c1 |
InChI: InChI=1S/C10H8/c1-2-6-10-8-4-3-7-9(10)5-1/h1-8H |
InChIKey: UFWIBTONFRDIAS-UHFFFAOYSA-N |
Hills Formula: C10H8 |
2D Image: |
|
Aliases: C6H4(C4H4); Naphthalene; Albocarbon; Dezodorator; Moth flakes; NSC 37565; Naphthene; Tar camphor; White tar |
Relative Molecular Mass: 128.1705 ± 0.0080 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
94.58 | 74.99 | ± 0.57 | kJ/mol |
|
Top contributors to the provenance of ΔfH° of C6H4(C4H4) (cr,l)The 20 contributors listed below account only for 66.6% of the provenance of ΔfH° of C6H4(C4H4) (cr,l). A total of 58 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 11.7 | 8513.16 | C6H4(C4H4) (cr,l) + 12 O2 (g) → 10 CO2 (g) + 4 H2O (cr,l)  | ΔrH°(298.15 K) = -1231.34 ± 0.36 kcal/mol | Keffler 1927, as quoted by NIST WebBook, est unc | 5.1 | 8513.15 | C6H4(C4H4) (cr,l) + 12 O2 (g) → 10 CO2 (g) + 4 H2O (cr,l)  | ΔrH°(298.15 K) = -1231.05 ± 0.36 (×1.509) kcal/mol | Keffler 1931, Cox 1970 | 4.1 | 8546.5 | C6H4(C2H2(CC(C4H4))) (g) + C6H6 (g) → 2 C6H4(C4H4) (g)  | ΔrH°(0 K) = 9.7 ± 3.6 kJ/mol | Karton 2013, est unc | 3.8 | 8546.4 | C6H4(C2H2(CC(C4H4))) (g) + C6H6 (g) → 2 C6H4(C4H4) (g)  | ΔrH°(0 K) = 2.83 ± 0.90 kcal/mol | Ruscic CBS-n | 3.8 | 8546.2 | C6H4(C2H2(CC(C4H4))) (g) + C6H6 (g) → 2 C6H4(C4H4) (g)  | ΔrH°(0 K) = 2.09 ± 0.90 kcal/mol | Ruscic G4 | 3.8 | 8546.1 | C6H4(C2H2(CC(C4H4))) (g) + C6H6 (g) → 2 C6H4(C4H4) (g)  | ΔrH°(0 K) = 2.05 ± 0.90 kcal/mol | Ruscic G3X | 3.2 | 8541.4 | C6H4(CH(CC(C4H4)CH)) (g) + C6H6 (g) → 2 C6H4(C4H4) (g)  | ΔrH°(0 K) = -2.87 ± 0.90 kcal/mol | Ruscic CBS-n | 3.2 | 8541.2 | C6H4(CH(CC(C4H4)CH)) (g) + C6H6 (g) → 2 C6H4(C4H4) (g)  | ΔrH°(0 K) = -3.55 ± 0.90 kcal/mol | Ruscic G4 | 3.2 | 8541.1 | C6H4(CH(CC(C4H4)CH)) (g) + C6H6 (g) → 2 C6H4(C4H4) (g)  | ΔrH°(0 K) = -3.63 ± 0.90 kcal/mol | Ruscic G3X | 3.0 | 8546.3 | C6H4(C2H2(CC(C4H4))) (g) + C6H6 (g) → 2 C6H4(C4H4) (g)  | ΔrH°(0 K) = 2.73 ± 1.0 kcal/mol | Ruscic CBS-n | 2.6 | 8549.1 | C6H4(C2H2(CC(C4H4))) (cr,l) + 33/2 O2 (g) → 14 CO2 (g) + 5 H2O (cr,l)  | ΔrH°(298.15 K) = -7048.5 ± 0.9 kJ/mol | Nagano 2002 | 2.6 | 8513.1 | C6H4(C4H4) (cr,l) + 12 O2 (g) → 10 CO2 (g) + 4 H2O (cr,l)  | ΔrH°(298.15 K) = -1232.34 ± 0.22 (×3.437) kcal/mol | Coleman 1966 | 2.6 | 8541.3 | C6H4(CH(CC(C4H4)CH)) (g) + C6H6 (g) → 2 C6H4(C4H4) (g)  | ΔrH°(0 K) = -2.96 ± 1.0 kcal/mol | Ruscic CBS-n | 2.5 | 8546.6 | C6H4(C2H2(CC(C4H4))) (g) + C6H6 (g) → 2 C6H4(C4H4) (g)  | ΔrH°(0 K) = 9.5 ± 4.6 kJ/mol | Karton 2021 | 2.3 | 8513.6 | C6H4(C4H4) (cr,l) + 12 O2 (g) → 10 CO2 (g) + 4 H2O (cr,l)  | ΔrH°(298.15 K) = -5156.3 ± 1.2 (×2.828) kJ/mol | Ammar 1977, as quoted by NIST WebBook, Roux 2008 | 2.1 | 8541.5 | C6H4(CH(CC(C4H4)CH)) (g) + C6H6 (g) → 2 C6H4(C4H4) (g)  | ΔrH°(0 K) = -14.5 ± 4.6 kJ/mol | Karton 2021, Karton 2012a | 1.9 | 2134.7 | C (graphite) + O2 (g) → CO2 (g)  | ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/mol | Hawtin 1966, note CO2e | 1.6 | 8513.7 | C6H4(C4H4) (cr,l) + 12 O2 (g) → 10 CO2 (g) + 4 H2O (cr,l)  | ΔrH°(298.15 K) = -5156.89 ± 1.60 (×2.484) kJ/mol | Speros 1960 | 1.3 | 8542.1 | C6H4(CH(CC(C4H4)CH)) (cr,l) + 33/2 O2 (g) → 14 CO2 (g) + 5 H2O (cr,l)  | ΔrH°(298.15 K) = -7062.6 ± 2.1 kJ/mol | Ribeiro da Silva 2007 | 1.1 | 8550.1 | C6H4(C2H2(CC(C4H4))) (cr,l) → C6H4(C2H2(CC(C4H4))) (g)  | ΔrH°(323.31 K) = 91.6 ± 0.8 kJ/mol | Ribeiro da Silva 2006, note unc |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of C6H4(C4H4) (cr,l) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 97.8 | Naphthalene | C6H4(C4H4) (g) | | 171.04 | 147.56 | ± 0.56 | kJ/mol | 128.1705 ± 0.0080 | 91-20-3*0 | 96.8 | Naphthalene cation | [C6H4(C4H4)]+ (g) | | 956.80 | 933.73 | ± 0.57 | kJ/mol | 128.1700 ± 0.0080 | 34512-27-1*0 | 47.8 | 1-Naphthyl anion | [C6H4(CCHCHCH)]- (g) | | 283.4 | 264.0 | ± 1.2 | kJ/mol | 127.1631 ± 0.0080 | 125254-29-7*0 | 44.9 | 2-Naphthyl anion | [C6H4(CHCCHCH)]- (g) | | 288.6 | 269.2 | ± 1.3 | kJ/mol | 127.1631 ± 0.0080 | 88760-89-8*0 | 43.7 | 1-Naphthalenyl | C6H4(CCHCHCH) (g) | | 417.9 | 398.3 | ± 1.3 | kJ/mol | 127.1626 ± 0.0080 | 2510-51-2*0 | 41.8 | 2-Naphthalenyl | C6H4(CHCCHCH) (g) | | 416.6 | 397.0 | ± 1.3 | kJ/mol | 127.1626 ± 0.0080 | 10237-50-0*0 | 38.7 | Phenanthrene | C6H4(C2H2(CC(C4H4))) (g) | | 231.86 | 203.04 | ± 0.77 | kJ/mol | 178.2292 ± 0.0112 | 85-01-8*0 | 37.2 | Anthracene | C6H4(CH(CC(C4H4)CH)) (g) | | 255.81 | 226.79 | ± 0.95 | kJ/mol | 178.2292 ± 0.0112 | 120-12-7*0 | 34.2 | Anthracene | C6H4(CH(CC(C4H4)CH)) (cr,l) | | 150.45 | 124.64 | ± 0.90 | kJ/mol | 178.2292 ± 0.0112 | 120-12-7*500 | 32.6 | Phenanthrene | C6H4(C2H2(CC(C4H4))) (cr,l) | | 136.21 | 110.93 | ± 0.65 | kJ/mol | 178.2292 ± 0.0112 | 85-01-8*500 |
|
Most Influential reactions involving C6H4(C4H4) (cr,l)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.176 | 8514.7 | C6H4(C4H4) (cr,l) → C6H4(C4H4) (g)  | ΔrH°(298.15 K) = 72.51 ± 0.28 kJ/mol | de Kruif 1981, Roux 2008 | 0.153 | 8514.10 | C6H4(C4H4) (cr,l) → C6H4(C4H4) (g)  | ΔrH°(298.15 K) = 72.5 ± 0.3 kJ/mol | Lee 1993, Roux 2008 | 0.153 | 8514.1 | C6H4(C4H4) (cr,l) → C6H4(C4H4) (g)  | ΔrH°(298.15 K) = 72.6 ± 0.3 kJ/mol | Roux 2008 | 0.127 | 8513.16 | C6H4(C4H4) (cr,l) + 12 O2 (g) → 10 CO2 (g) + 4 H2O (cr,l)  | ΔrH°(298.15 K) = -1231.34 ± 0.36 kcal/mol | Keffler 1927, as quoted by NIST WebBook, est unc | 0.086 | 8514.4 | C6H4(C4H4) (cr,l) → C6H4(C4H4) (g)  | ΔrH°(298.15 K) = 72.7 ± 0.4 kJ/mol | Chirico 1993, Roux 2008 | 0.079 | 8515.2 | C6H4(C4H4) (cr,l) → C6H4(C4H4) (g)  | ΔrH°(298.15 K) = 17.328 ± 0.10 kcal/mol | Sinke 1974, est unc | 0.056 | 8513.15 | C6H4(C4H4) (cr,l) + 12 O2 (g) → 10 CO2 (g) + 4 H2O (cr,l)  | ΔrH°(298.15 K) = -1231.05 ± 0.36 (×1.509) kcal/mol | Keffler 1931, Cox 1970 | 0.055 | 8514.3 | C6H4(C4H4) (cr,l) → C6H4(C4H4) (g)  | ΔrH°(298.15 K) = 72.44 ± 0.5 kJ/mol | Ruzicka 2005, est unc | 0.055 | 8514.11 | C6H4(C4H4) (cr,l) → C6H4(C4H4) (g)  | ΔrH°(298.15 K) = 73.00 ± 0.50 kJ/mol | Irving 1972, note unc | 0.050 | 8515.3 | C6H4(C4H4) (cr,l) → C6H4(C4H4) (g)  | ΔrH°(298.15 K) = 17.22 ± 0.12 (×1.044) kcal/mol | Morawetz 1972, note unc | 0.038 | 8514.8 | C6H4(C4H4) (cr,l) → C6H4(C4H4) (g)  | ΔrH°(298.15 K) = 72.8 ± 0.6 kJ/mol | Colomina 1982, note unc | 0.038 | 8514.2 | C6H4(C4H4) (cr,l) → C6H4(C4H4) (g)  | ΔrH°(298.15 K) = 72.60 ± 0.60 kJ/mol | Sabbah 1999, Sabbah 1987 | 0.030 | 8515.4 | C6H4(C4H4) (cr,l) → C6H4(C4H4) (g)  | ΔrH°(298.15 K) = 17.37 ± 0.16 kcal/mol | Miller 1963, note unc | 0.028 | 8513.1 | C6H4(C4H4) (cr,l) + 12 O2 (g) → 10 CO2 (g) + 4 H2O (cr,l)  | ΔrH°(298.15 K) = -1232.34 ± 0.22 (×3.437) kcal/mol | Coleman 1966 | 0.025 | 8514.6 | C6H4(C4H4) (cr,l) → C6H4(C4H4) (g)  | ΔrH°(298.15 K) = 72.97 ± 0.74 kJ/mol | Van Ekeren 1983, note unc | 0.025 | 8513.6 | C6H4(C4H4) (cr,l) + 12 O2 (g) → 10 CO2 (g) + 4 H2O (cr,l)  | ΔrH°(298.15 K) = -5156.3 ± 1.2 (×2.828) kJ/mol | Ammar 1977, as quoted by NIST WebBook, Roux 2008 | 0.018 | 8513.7 | C6H4(C4H4) (cr,l) + 12 O2 (g) → 10 CO2 (g) + 4 H2O (cr,l)  | ΔrH°(298.15 K) = -5156.89 ± 1.60 (×2.484) kJ/mol | Speros 1960 | 0.017 | 8514.13 | C6H4(C4H4) (cr,l) → C6H4(C4H4) (g)  | ΔrH°(323 K) = 70.85 ± 0.78 (×1.139) kJ/mol | Torres-Gomez 1988, note unc | 0.012 | 8515.1 | C6H4(C4H4) (cr,l) → C6H4(C4H4) (g)  | ΔrH°(298.15 K) = 17.50 ± 0.25 kcal/mol | Speros 1960 | 0.011 | 8513.12 | C6H4(C4H4) (cr,l) + 12 O2 (g) → 10 CO2 (g) + 4 H2O (cr,l)  | ΔrH°(298.15 K) = -1231.5 ± 1.2 kcal/mol | Milone 1932, Cox 1970 |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.128 of the Thermochemical Network. Argonne National Laboratory, Lemont, Illinois 2023; available at ATcT.anl.gov [DOI: 10.17038/CSE/1997230]
|
4
|
|
N. Genossar, P. B. Changala, B. Gans, J.-C. Loison, S. Hartweg, M.-A. Martin-Drumel, G. A. Garcia, J. F. Stanton, B. Ruscic, and J. H. Baraban
Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation
J. Am. Chem. Soc. 144, 18518-18525 (2022)
[DOI: 10.1021/jacs.2c07740]
|
5
|
|
B. Ruscic and D. H. Bross
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021)
[DOI: 10.1080/00268976.2021.1969046]
|
6
|
|
J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021)
[DOI: 10.1063/5.0069322]
|
7
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
8
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|