Selected ATcT [1, 2] enthalpy of formation based on version 1.128 of the Thermochemical Network [3]

This version of ATcT results[4] was generated by additional expansion of version 1.124 [5,6] to include new species relevant in the ring opening mechanism of cyclopropyl radical and cation.

Cyanogen chloride

Formula: ClCN (g)
CAS RN: 506-77-4
ATcT ID: 506-77-4*0
SMILES: N#CCl
SMILES: ClC#N
InChI: InChI=1S/CClN/c2-1-3
InChIKey: QPJDMGCKMHUXFD-UHFFFAOYSA-N
Hills Formula: C1Cl1N1

2D Image:

N#CCl
Aliases: ClCN; Cyanogen chloride; Carbononitridic chloride; Cyanic chloride; Chlorine cyanide; Chlorocyan; Chlorocyanide; Chlorocyanogen; Cyanochloride; RCRA P033; UN 1589
Relative Molecular Mass: 61.4701 ± 0.0012

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
135.14135.83± 0.43kJ/mol

3D Image of ClCN (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of ClCN (g)

The 20 contributors listed below account only for 84.8% of the provenance of ΔfH° of ClCN (g).
A total of 30 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
15.92791.12 ClCN (g) → Cl (g) C (g) N (g) ΔrH°(0 K) = 278.78 ± 0.25 kcal/molKarton 2007
15.42796.5 ClCN (g) H (g) → HCN (g) Cl (g) ΔrH°(0 K) = -24.36 ± 0.25 kcal/molKarton 2011
11.02791.11 ClCN (g) → Cl (g) C (g) N (g) ΔrH°(0 K) = 278.79 ± 0.30 kcal/molKarton 2006, Karton 2008, Karton 2011
10.42803.12 ClCN (g) → Cl (g) CN (g) ΔrH°(0 K) = 100.55 ± 0.30 kcal/molMartin 2006, Karton 2006
6.22791.10 ClCN (g) → Cl (g) C (g) N (g) ΔrH°(0 K) = 278.58 ± 0.40 kcal/molKarton 2006, Karton 2011
5.82803.11 ClCN (g) → Cl (g) CN (g) ΔrH°(0 K) = 100.37 ± 0.40 kcal/molMartin 2006, Karton 2006
3.92791.14 ClCN (g) → Cl (g) C (g) N (g) ΔrH°(0 K) = 278.38 ± 0.5 kcal/molFeller 2008
3.12791.9 ClCN (g) → Cl (g) C (g) N (g) ΔrH°(0 K) = 278.72 ± 0.56 kcal/molKarton 2006, Karton 2011
3.02803.10 ClCN (g) → Cl (g) CN (g) ΔrH°(0 K) = 100.51 ± 0.56 kcal/molMartin 2006, Karton 2006
1.12800.7 ClCN (g) CH4 (g) → HCN (g) CH3Cl (g) ΔrH°(0 K) = -3.51 ± 0.9 kcal/molRuscic W1RO
1.02720.4 CH3CN (g) HCCCl (g) → CH3CCH (g) ClCN (g) ΔrH°(0 K) = 4.23 ± 0.85 kcal/molRuscic W1RO
0.92720.2 CH3CN (g) HCCCl (g) → CH3CCH (g) ClCN (g) ΔrH°(0 K) = 3.88 ± 0.90 kcal/molRuscic G4
0.92720.1 CH3CN (g) HCCCl (g) → CH3CCH (g) ClCN (g) ΔrH°(0 K) = 4.10 ± 0.90 kcal/molRuscic G3X
0.82801.7 ClCN (g) CH3F (g) → FCN (g) CH3Cl (g) ΔrH°(0 K) = 6.31 ± 0.9 kcal/molRuscic W1RO
0.82802.7 ClCN (g) HCCH (g) → HCCCl (g) HCN (g) ΔrH°(0 K) = -1.29 ± 1.0 kcal/molParthiban 2001, Parthiban 2002, Ruscic W1RO
0.82802.4 ClCN (g) HCCH (g) → HCCCl (g) HCN (g) ΔrH°(0 K) = -0.95 ± 1.0 kcal/molRuscic G4
0.72720.3 CH3CN (g) HCCCl (g) → CH3CCH (g) ClCN (g) ΔrH°(0 K) = 4.24 ± 1.00 kcal/molRuscic CBS-n
0.72804.1 ClCN (g) → Cl+ (g) CN (g) ΔrH°(0 K) = 17.324 ± 0.049 eVDibeler 1967b, AE corr, est unc
0.72803.1 ClCN (g) → Cl (g) CN (g) ΔrH°(0 K) = 4.33 ± 0.05 eVDavis 1968
0.62796.4 ClCN (g) H (g) → HCN (g) Cl (g) ΔrH°(0 K) = -24.51 ± 1.2 kcal/molRuscic W1RO

Top 10 species with enthalpies of formation correlated to the ΔfH° of ClCN (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
44.5 Cyanogen chloride cation[ClCN]+ (g)N#C[Cl+]1326.211327.54± 0.95kJ/mol61.4696 ±
0.0012
37612-72-9*0
17.7 Isocyanogen chlorideClNC (g)[C]=NCl314.7316.3± 2.4kJ/mol61.4701 ±
0.0012
75754-69-7*0
13.8 Cyanogen chloride anion[ClCN]- (g)N#C[Cl-]46.851.2± 3.1kJ/mol61.4707 ±
0.0012
12281-43-5*0
11.6 NitrilomethylCN (g)[C]#N436.73440.02± 0.14kJ/mol26.01744 ±
0.00080
2074-87-5*0
11.3 Hydrogen cyanideHCN (g)C#N129.681129.297± 0.088kJ/mol27.02538 ±
0.00081
74-90-8*0
11.3 Hydrogen cyanide anion[HCN]- (g)[CH-]#N129.530129.052± 0.088kJ/mol27.02593 ±
0.00081
12334-27-9*0
11.2 Cyanic fluorideFCN (g)N#CF8.528.85± 0.70kJ/mol45.01584 ±
0.00080
1495-50-7*0
11.0 Isocyanogen chloride cation[ClNC]+ (g)[C]=N[Cl+]1481.01482.2± 3.9kJ/mol61.4696 ±
0.0012
956475-91-5*0
10.9 Isocyanogen chloride anion[ClNC]- (g)[C]=N[Cl-]102.9107.4± 3.9kJ/mol61.4707 ±
0.0012
923019-39-0*0
10.9 Cyanide[CN]- (g)[C-]#N63.97767.263± 0.092kJ/mol26.01799 ±
0.00080
57-12-5*0

Most Influential reactions involving ClCN (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.7702792.1 ClCN (g) → [ClCN]+ (g) ΔrH°(0 K) = 12.34 ± 0.01 eVDibeler 1967b
0.3902793.4 [ClCN]- (g) → ClCN (g) ΔrH°(0 K) = 0.906 ± 0.050 eVRuscic W1RO
0.3132810.7 ClCN (g) → ClNC (g) ΔrH°(0 K) = 42.7 ± 1.0 kcal/molLee 1995b, Lee 1995a
0.2622793.2 [ClCN]- (g) → ClCN (g) ΔrH°(0 K) = 0.916 ± 0.061 eVRuscic G4
0.2172810.8 ClCN (g) → ClNC (g) ΔrH°(0 K) = 43.06 ± 1.2 kcal/molRuscic W1RO
0.1852810.4 ClCN (g) → ClNC (g) ΔrH°(0 K) = 42.88 ± 1.3 kcal/molRuscic G4
0.1612796.5 ClCN (g) H (g) → HCN (g) Cl (g) ΔrH°(0 K) = -24.36 ± 0.25 kcal/molKarton 2011
0.1612791.12 ClCN (g) → Cl (g) C (g) N (g) ΔrH°(0 K) = 278.78 ± 0.25 kcal/molKarton 2007
0.1602810.3 ClCN (g) → ClNC (g) ΔrH°(0 K) = 43.33 ± 1.4 kcal/molRuscic G3X
0.1352793.1 [ClCN]- (g) → ClCN (g) ΔrH°(0 K) = 0.931 ± 0.085 eVRuscic G3X
0.1222810.6 ClCN (g) → ClNC (g) ΔrH°(0 K) = 42.67 ± 1.6 kcal/molRuscic CBS-n
0.1192792.3 ClCN (g) → [ClCN]+ (g) ΔrH°(0 K) = 12.37 ± 0.02 (×1.269) eVHeilbronner 1970
0.1152803.12 ClCN (g) → Cl (g) CN (g) ΔrH°(0 K) = 100.55 ± 0.30 kcal/molMartin 2006, Karton 2006
0.1152793.3 [ClCN]- (g) → ClCN (g) ΔrH°(0 K) = 0.947 ± 0.092 eVRuscic CBS-n
0.1122791.11 ClCN (g) → Cl (g) C (g) N (g) ΔrH°(0 K) = 278.79 ± 0.30 kcal/molKarton 2006, Karton 2008, Karton 2011
0.0972793.5 [ClCN]- (g) → ClCN (g) ΔrH°(0 K) = 0.89 ± 0.10 eVKhiri 2015, est unc
0.0652803.11 ClCN (g) → Cl (g) CN (g) ΔrH°(0 K) = 100.37 ± 0.40 kcal/molMartin 2006, Karton 2006
0.0632791.10 ClCN (g) → Cl (g) C (g) N (g) ΔrH°(0 K) = 278.58 ± 0.40 kcal/molKarton 2006, Karton 2011
0.0602827.9 BrCN (g) HOCl (g) → ClCN (g) HOBr (g) ΔrH°(0 K) = -8.3 ± 1.0 (×1.384) kcal/molLee 1995c
0.0482792.10 ClCN (g) → [ClCN]+ (g) ΔrH°(0 K) = 12.378 ± 0.040 eVRuscic W1RO


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.128 of the Thermochemical Network. Argonne National Laboratory, Lemont, Illinois 2023; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1997230]
4   N. Genossar, P. B. Changala, B. Gans, J.-C. Loison, S. Hartweg, M.-A. Martin-Drumel, G. A. Garcia, J. F. Stanton, B. Ruscic, and J. H. Baraban
Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation
J. Am. Chem. Soc. 144, 18518-18525 (2022) [DOI: 10.1021/jacs.2c07740]
5   B. Ruscic and D. H. Bross
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046]
6   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
8   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.