Selected ATcT [1, 2] enthalpy of formation based on version 1.128 of the Thermochemical Network [3]

This version of ATcT results[4] was generated by additional expansion of version 1.124 [5,6] to include new species relevant in the ring opening mechanism of cyclopropyl radical and cation.

1-Buten-3-yn-1-yl

Formula: HCCCHCH (g, cis)
CAS RN: 2810-61-9
ATcT ID: 2810-61-9*2
SMILES: C#CC=[CH]
InChI: InChI=1S/C4H3/c1-3-4-2/h1-3H
InChIKey: GQMYNBIOBOYFNG-UHFFFAOYSA-N
Hills Formula: C4H3

2D Image:

C#CC=[CH]
Aliases: HCCCHCH; 1-Buten-3-yn-1-yl; But-1-en-3-yn-2-yl; CHCHCCH; n-C4H3
Relative Molecular Mass: 51.0666 ± 0.0032

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
547.7545.0± 1.2kJ/mol

3D Image of HCCCHCH (g, cis)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of HCCCHCH (g, cis)

The 20 contributors listed below account only for 58.4% of the provenance of ΔfH° of HCCCHCH (g, cis).
A total of 182 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
21.97780.6 HCCCHCH (g, trans) → HCCCHCH (g, cis) ΔrH°(0 K) = 0.06 ± 0.30 kcal/molWheeler 2004, est unc
4.07781.10 HCCCHCH (g, trans) → CH2CCCH (g) ΔrH°(0 K) = -11.80 ± 0.30 kcal/molWheeler 2004, est unc
2.77772.5 [HCCCHCH]- (g, cis) → HCCCHCH (g, cis) ΔrH°(0 K) = 1.323 ± 0.050 eVRuscic W1RO
2.67780.5 HCCCHCH (g, trans) → HCCCHCH (g, cis) ΔrH°(0 K) = 36 ± 300 cm-1Ruscic W1RO
2.57780.2 HCCCHCH (g, trans) → HCCCHCH (g, cis) ΔrH°(0 K) = 58 ± 310 cm-1Ruscic G4
2.57780.4 HCCCHCH (g, trans) → HCCCHCH (g, cis) ΔrH°(0 K) = 6 ± 310 cm-1Ruscic CBS-n
2.47780.1 HCCCHCH (g, trans) → HCCCHCH (g, cis) ΔrH°(0 K) = 40 ± 315 cm-1Ruscic G3X
2.17771.5 HCCCHCH (g, cis) → [HCCCHCH]+ (g, cis) ΔrH°(0 K) = 9.692 ± 0.040 eVRuscic W1RO
2.07749.6 CH2CCCH (g) → 4 C (g) + 3 H (g) ΔrH°(0 K) = 715.82 ± 0.50 kcal/molWheeler 2004, est unc
1.97780.3 HCCCHCH (g, trans) → HCCCHCH (g, cis) ΔrH°(0 K) = 8 ± 350 cm-1Ruscic CBS-n
1.87772.2 [HCCCHCH]- (g, cis) → HCCCHCH (g, cis) ΔrH°(0 K) = 1.350 ± 0.061 eVRuscic G4
1.77866.5 C(CHCHCH) (g) → HCCCHCH (g, cis) ΔrH°(0 K) = -24.96 ± 1.2 kcal/molRuscic W1RO
1.67781.6 HCCCHCH (g, trans) → CH2CCCH (g) ΔrH°(0 K) = -51.65 ± 2.00 kJ/molKlippenstein 2017
1.47866.2 C(CHCHCH) (g) → HCCCHCH (g, cis) ΔrH°(0 K) = -25.44 ± 1.3 kcal/molRuscic G4
1.47866.4 C(CHCHCH) (g) → HCCCHCH (g, cis) ΔrH°(0 K) = -24.73 ± 1.3 kcal/molRuscic CBS-n
1.27866.1 C(CHCHCH) (g) → HCCCHCH (g, cis) ΔrH°(0 K) = -26.14 ± 1.4 kcal/molRuscic G3X
1.17866.6 C(CHCHCH) (g) → HCCCHCH (g, cis) ΔrH°(0 K) = -24.2 ± 1.5 kcal/molHansen 2006a, est unc
0.97866.3 C(CHCHCH) (g) → HCCCHCH (g, cis) ΔrH°(0 K) = -25.52 ± 1.6 kcal/molRuscic CBS-n
0.97772.1 [HCCCHCH]- (g, cis) → HCCCHCH (g, cis) ΔrH°(0 K) = 1.361 ± 0.085 eVRuscic G3X
0.97783.5 CH2CHCCH (g) CH2CH (g) → HCCCHCH (g, trans) CH2CH2 (g) ΔrH°(0 K) = 2.47 ± 0.9 kcal/molRuscic W1RO

Top 10 species with enthalpies of formation correlated to the ΔfH° of HCCCHCH (g, cis)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
66.0 1-Buten-3-yn-1-ylHCCCHCH (g, trans)C#CC=[CH]547.22544.56± 0.87kJ/mol51.0666 ±
0.0032
2810-61-9*1
66.0 1-Buten-3-yn-1-ylHCCCHCH (g)C#CC=[CH]547.22544.71± 0.87kJ/mol51.0666 ±
0.0032
2810-61-9*0
47.2 1,3-Cyclobutadien-1-ylC(CHCHCH) (g)[C]1=CC=C1653.7649.2± 1.1kJ/mol51.0666 ±
0.0032
127611-22-7*0
45.7 1,2,3-Butatrien-1-ylCH2CCCH (g)C=C=C=[CH]497.40497.41± 0.69kJ/mol51.0666 ±
0.0032
22112-56-7*0
36.6 1-Buten-3-ynylium[HCCCHCH]+ (g, cis)C#CC=[CH+]1483.01480.5± 1.7kJ/mol51.0661 ±
0.0032
84654-85-3*2
35.6 VinylacetyleneCH2CHCCH (g)C=CC#C296.24289.48± 0.56kJ/mol52.0746 ±
0.0032
689-97-4*0
34.8 1-Buten-3-ynylium[HCCCHCH]+ (g, trans)C#CC=[CH+]1482.31479.8± 1.5kJ/mol51.0661 ±
0.0032
84654-85-3*1
34.8 1-Buten-3-ynylium[HCCCHCH]+ (g)C#CC=[CH+]1482.31480.2± 1.5kJ/mol51.0661 ±
0.0032
84654-85-3*0
33.7 2-Cyclopropen-1-ylidenemethylCHC(CHCH) (g)[CH]=C1C=C1635.6632.5± 1.3kJ/mol51.0666 ±
0.0032
127611-25-0*0
32.9 1,2,3-Butatrien-1-ylium[CH2CCCH]+ (g, triplet)C=C=C=[CH+]1425.71426.1± 1.3kJ/mol51.0661 ±
0.0032
81932-79-8*1

Most Influential reactions involving HCCCHCH (g, cis)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.4847780.6 HCCCHCH (g, trans) → HCCCHCH (g, cis) ΔrH°(0 K) = 0.06 ± 0.30 kcal/molWheeler 2004, est unc
0.1737771.5 HCCCHCH (g, cis) → [HCCCHCH]+ (g, cis) ΔrH°(0 K) = 9.692 ± 0.040 eVRuscic W1RO
0.0837772.5 [HCCCHCH]- (g, cis) → HCCCHCH (g, cis) ΔrH°(0 K) = 1.323 ± 0.050 eVRuscic W1RO
0.0597780.5 HCCCHCH (g, trans) → HCCCHCH (g, cis) ΔrH°(0 K) = 36 ± 300 cm-1Ruscic W1RO
0.0567772.2 [HCCCHCH]- (g, cis) → HCCCHCH (g, cis) ΔrH°(0 K) = 1.350 ± 0.061 eVRuscic G4
0.0557780.4 HCCCHCH (g, trans) → HCCCHCH (g, cis) ΔrH°(0 K) = 6 ± 310 cm-1Ruscic CBS-n
0.0557780.2 HCCCHCH (g, trans) → HCCCHCH (g, cis) ΔrH°(0 K) = 58 ± 310 cm-1Ruscic G4
0.0537780.1 HCCCHCH (g, trans) → HCCCHCH (g, cis) ΔrH°(0 K) = 40 ± 315 cm-1Ruscic G3X
0.0527771.2 HCCCHCH (g, cis) → [HCCCHCH]+ (g, cis) ΔrH°(0 K) = 9.737 ± 0.073 eVRuscic G4
0.0517866.5 C(CHCHCH) (g) → HCCCHCH (g, cis) ΔrH°(0 K) = -24.96 ± 1.2 kcal/molRuscic W1RO
0.0497771.4 HCCCHCH (g, cis) → [HCCCHCH]+ (g, cis) ΔrH°(0 K) = 9.658 ± 0.075 eVRuscic CBS-n
0.0437866.2 C(CHCHCH) (g) → HCCCHCH (g, cis) ΔrH°(0 K) = -25.44 ± 1.3 kcal/molRuscic G4
0.0437866.4 C(CHCHCH) (g) → HCCCHCH (g, cis) ΔrH°(0 K) = -24.73 ± 1.3 kcal/molRuscic CBS-n
0.0437780.3 HCCCHCH (g, trans) → HCCCHCH (g, cis) ΔrH°(0 K) = 8 ± 350 cm-1Ruscic CBS-n
0.0377866.1 C(CHCHCH) (g) → HCCCHCH (g, cis) ΔrH°(0 K) = -26.14 ± 1.4 kcal/molRuscic G3X
0.0327866.6 C(CHCHCH) (g) → HCCCHCH (g, cis) ΔrH°(0 K) = -24.2 ± 1.5 kcal/molHansen 2006a, est unc
0.0327771.1 HCCCHCH (g, cis) → [HCCCHCH]+ (g, cis) ΔrH°(0 K) = 9.697 ± 0.093 eVRuscic G3X
0.0287772.1 [HCCCHCH]- (g, cis) → HCCCHCH (g, cis) ΔrH°(0 K) = 1.361 ± 0.085 eVRuscic G3X
0.0287866.3 C(CHCHCH) (g) → HCCCHCH (g, cis) ΔrH°(0 K) = -25.52 ± 1.6 kcal/molRuscic CBS-n
0.0287771.3 HCCCHCH (g, cis) → [HCCCHCH]+ (g, cis) ΔrH°(0 K) = 9.707 ± 0.099 eVRuscic CBS-n


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.128 of the Thermochemical Network. Argonne National Laboratory, Lemont, Illinois 2023; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1997230]
4   N. Genossar, P. B. Changala, B. Gans, J.-C. Loison, S. Hartweg, M.-A. Martin-Drumel, G. A. Garcia, J. F. Stanton, B. Ruscic, and J. H. Baraban
Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation
J. Am. Chem. Soc. 144, 18518-18525 (2022) [DOI: 10.1021/jacs.2c07740]
5   B. Ruscic and D. H. Bross
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046]
6   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
8   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.