Selected ATcT [1, 2] enthalpy of formation based on version 1.128 of the Thermochemical Network [3] This version of ATcT results[4] was generated by additional expansion of version 1.124 [5,6] to include new species relevant in the ring opening mechanism of cyclopropyl radical and cation.
|
Helium cation |
Formula: He+ (g) |
CAS RN: 14234-48-1 |
ATcT ID: 14234-48-1*0 |
SMILES: [He+] |
InChI: InChI=1S/He/q+1 |
InChIKey: QLNXTEZOQCZJBA-UHFFFAOYSA-N |
Hills Formula: He1+ |
2D Image: |
|
Aliases: He+; Helium cation; Helium ion (1+); Helium atom cation; Helium atom ion (1+); Atomic helium cation; Atomic helium ion (1+) |
Relative Molecular Mass: 4.0020534 ± 0.0000020 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
2372.322 | 2372.322 | ± 0.000 | kJ/mol |
|
3D Image of He+ (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of He+ (g)The 3 contributors listed below account for 93.6% of the provenance of ΔfH° of He+ (g).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of He+ (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 77.6 | Helium dication | [He]+2 (g) | | 7622.839 | 7622.839 | ± 0.000 | kJ/mol | 4.0015048 ± 0.0000020 | 12587-46-1*0 |
|
Most Influential reactions involving He+ (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.755 | 8603.1 | He (g) → He+ (g)  | ΔrH°(0 K) = 198310.66637 ± 0.00040 cm-1 | Kandula 2010, note unc, Tiesinga 2021 | 0.499 | 8620.13 | [He2]+ (g) → He (g) + He+ (g)  | ΔrH°(0 K) = 19116.116 ± 2 cm-1 | Tung 2012, est unc | 0.499 | 8620.14 | [He2]+ (g) → He (g) + He+ (g)  | ΔrH°(0 K) = 19116.128 ± 2 cm-1 | Cencek 2000, Tung 2012, est unc | 0.497 | 8604.7 | He+ (g) → [He]+2 (g)  | ΔrH°(0 K) = 438908.8785 ± 0.0004 cm-1 | Johnson 1985, note std dev, Tiesinga 2021 | 0.497 | 8604.5 | He+ (g) → [He]+2 (g)  | ΔrH°(0 K) = 438908.8782 ± 0.0002 cm-1 | Erickson 1977, note std dev | 0.096 | 8603.10 | He (g) → He+ (g)  | ΔrH°(0 K) = 198310.6667 ± 0.0028 cm-1 | Korobov 2001, note unc | 0.084 | 8603.2 | He (g) → He+ (g)  | ΔrH°(0 K) = 198310.6672 ± 0.0030 cm-1 | Eikema 1997, note unc | 0.035 | 8603.3 | He (g) → He+ (g)  | ΔrH°(0 K) = 198310.6712 ± 0.0032 (×1.445) cm-1 | Bergeson 1998, note unc | 0.021 | 8603.11 | He (g) → He+ (g)  | ΔrH°(0 K) = 198310.6668 ± 0.0060 cm-1 | Drake 1998, note unc | 0.005 | 8603.12 | He (g) → He+ (g)  | ΔrH°(0 K) = 198310.655 ± 0.01 (×1.164) cm-1 | Drake 1988, est unc | 0.005 | 8604.3 | He+ (g) → [He]+2 (g)  | ΔrH°(0 K) = 438908.877 ± 0.010 cm-1 | Garcia 1965 | 0.001 | 8603.9 | He (g) → He+ (g)  | ΔrH°(0 K) = 198310.674 ± 0.025 cm-1 | Dalgarno 1960 | 0.000 | 8603.7 | He (g) → He+ (g)  | ΔrH°(0 K) = 198310.687 ± 0.05 cm-1 | Pekeris 1959, est unc | 0.000 | 8603.8 | He (g) → He+ (g)  | ΔrH°(0 K) = 198310.67 ± 0.05 cm-1 | Pekeris 1958, est unc | 0.000 | 8603.5 | He (g) → He+ (g)  | ΔrH°(0 K) = 198310.76 ± 0.02 (×4.757) cm-1 | Seaton 1966a, note unc | 0.000 | 8620.8 | [He2]+ (g) → He (g) + He+ (g)  | ΔrH°(0 K) = 54.44 ± 0.50 kcal/mol | Gurtubay 2006, Huber 1979, est unc | 0.000 | 8602.1 | He (g, triplet) → He+ (g)  | ΔrH°(0 K) = 38454.8274 ± 0.2 cm-1 | Accad 1971, est unc | 0.000 | 8603.4 | He (g) → He+ (g)  | ΔrH°(0 K) = 198310.81 ± 0.10 (×1.445) cm-1 | Martin 1970 | 0.000 | 8620.10 | [He2]+ (g) → He (g) + He+ (g)  | ΔrH°(0 K) = 2.365 ± 0.030 eV | Huber 1979, Liu 1971, est unc | 0.000 | 8620.11 | [He2]+ (g) → He (g) + He+ (g)  | ΔrH°(0 K) = 2.366 ± 0.030 eV | Bauschlicher 1989, Huber 1979, est unc |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.128 of the Thermochemical Network. Argonne National Laboratory, Lemont, Illinois 2023; available at ATcT.anl.gov [DOI: 10.17038/CSE/1997230]
|
4
|
|
N. Genossar, P. B. Changala, B. Gans, J.-C. Loison, S. Hartweg, M.-A. Martin-Drumel, G. A. Garcia, J. F. Stanton, B. Ruscic, and J. H. Baraban
Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation
J. Am. Chem. Soc. 144, 18518-18525 (2022)
[DOI: 10.1021/jacs.2c07740]
|
5
|
|
B. Ruscic and D. H. Bross
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021)
[DOI: 10.1080/00268976.2021.1969046]
|
6
|
|
J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021)
[DOI: 10.1063/5.0069322]
|
7
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
8
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|