Selected ATcT [1, 2] enthalpy of formation based on version 1.124 of the Thermochemical Network [3] This version of ATcT results was generated by additional expansion of version 1.122x [4] to include additional information relevant to the study of thermophysical and thermochemical properties of CH2 and CH3 using nonrigid rotor anharmonic oscillator (NRRAO) partition functions [5], the development and benchmarking of a state-of-the-art computational approach that aims to reproduce total atomization energies of small molecules within 10–15 cm-1 [6], as well as the study of the reversible reaction C2H3 + H2 ⇌ C2H4 + H ⇌ C2H5 [7]
|
Acetic acid |
Formula: CH3C(O)OH (aq) |
CAS RN: 64-19-7 |
ATcT ID: 64-19-7*800 |
SMILES: CC(=O)O |
InChI: InChI=1S/C2H4O2/c1-2(3)4/h1H3,(H,3,4) |
InChIKey: QTBSBXVTEAMEQO-UHFFFAOYSA-N |
Hills Formula: C2H4O2 |
2D Image: |
|
Aliases: CH3C(O)OH; Acetic acid; Ethanoic acid; Ethylic acid; Glacial acetic acid; Methanecarboxylic acid; Vinegar acid; H3CC(O)OH; HOCOCH3; CH3COOH; HO(C=O)CH3; CH3(C=O)OH; UN 2789; UN 2790 |
Relative Molecular Mass: 60.0520 ± 0.0017 |
ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units |
---|
| -485.10 | ± 0.27 | kJ/mol |
|
Top contributors to the provenance of ΔfH° of CH3C(O)OH (aq)The 14 contributors listed below account for 90.1% of the provenance of ΔfH° of CH3C(O)OH (aq).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 17.2 | 4608.2 | CH3C(O)OH (cr,l) + 2 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -209.125 ± 0.054 kcal/mol | Lebedeva 1964 | 15.4 | 4609.1 | CH3C(O)OH (cr,l) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = -0.360 ± 0.100 kcal/mol | Parker 1965, NBS Tables 1989, est unc | 7.6 | 4608.3 | CH3C(O)OH (cr,l) + 2 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -875.14 ± 0.34 kJ/mol | Steele 1997 | 6.8 | 4609.4 | CH3C(O)OH (cr,l) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = -0.326 ± 0.150 kcal/mol | Pickering 1895, Parker 1965, est unc | 6.8 | 4609.5 | CH3C(O)OH (cr,l) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = -0.364 ± 0.150 kcal/mol | Thomsen 1882, Parker 1965, est unc | 6.8 | 4609.7 | CH3C(O)OH (cr,l) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = -0.350 ± 0.150 kcal/mol | Berthelot 1875b, Parker 1965, est unc | 6.8 | 4609.2 | CH3C(O)OH (cr,l) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = -0.361 ± 0.150 kcal/mol | Pritchard 1950, Parker 1965, est unc | 6.8 | 4609.3 | CH3C(O)OH (cr,l) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = -0.347 ± 0.150 kcal/mol | Klibanova 1933, Parker 1965, est unc | 5.1 | 4608.1 | CH3C(O)OH (cr,l) + 2 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -874.54 ± 0.30 (×1.384) kJ/mol | Evans 1959 | 4.7 | 4609.6 | CH3C(O)OH (cr,l) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = -0.446 ± 0.180 kcal/mol | Carson 1949, Parker 1965, est unc | 2.2 | 4085.1 | CH2CO (g) + [OH]- (aq) + H+ (aq) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = -49.79 ± 0.41 kcal/mol | Nuttall 1971 | 1.1 | 4709.7 | 2 CH3C(O)Cl (g) + CH2O (g) → 2 CH3CHO (g) + CCl2O (g)  | ΔrH°(0 K) = 10.13 ± 0.9 kcal/mol | Ruscic W1RO | 1.1 | 120.2 | 1/2 O2 (g) + H2 (g) → H2O (cr,l)  | ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/mol | Rossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930 | 0.9 | 4709.4 | 2 CH3C(O)Cl (g) + CH2O (g) → 2 CH3CHO (g) + CCl2O (g)  | ΔrH°(0 K) = 9.60 ± 1.0 kcal/mol | Ruscic G4 |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3C(O)OH (aq) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 100.0 | Acetate | [CH3C(O)O]- (aq) | | | -485.10 | ± 0.27 | kJ/mol | 59.0446 ± 0.0017 | 71-50-1*800 | 99.9 | Acetic acid | CH3C(O)OH (aq, undissoc) | | | -484.79 | ± 0.27 | kJ/mol | 60.0520 ± 0.0017 | 64-19-7*1000 | 79.6 | Acetic acid | CH3C(O)OH (aq, 10000 H2O) | | | -484.84 | ± 0.33 | kJ/mol | 60.0520 ± 0.0017 | 64-19-7*850 | 79.6 | Acetic acid | CH3C(O)OH (aq, 25 H2O) | | | -484.23 | ± 0.33 | kJ/mol | 60.0520 ± 0.0017 | 64-19-7*819 | 79.6 | Acetic acid | CH3C(O)OH (aq, 1000 H2O) | | | -484.81 | ± 0.33 | kJ/mol | 60.0520 ± 0.0017 | 64-19-7*839 | 79.6 | Acetic acid | CH3C(O)OH (aq, 500 H2O) | | | -484.79 | ± 0.33 | kJ/mol | 60.0520 ± 0.0017 | 64-19-7*833 | 79.6 | Acetic acid | CH3C(O)OH (aq, 75 H2O) | | | -484.61 | ± 0.33 | kJ/mol | 60.0520 ± 0.0017 | 64-19-7*825 | 79.6 | Acetic acid | CH3C(O)OH (aq, 5000 H2O) | | | -484.70 | ± 0.33 | kJ/mol | 60.0520 ± 0.0017 | 64-19-7*844 | 79.6 | Acetic acid | CH3C(O)OH (aq, 100 H2O) | | | -484.66 | ± 0.33 | kJ/mol | 60.0520 ± 0.0017 | 64-19-7*828 | 79.6 | Acetic acid | CH3C(O)OH (aq, 20000 H2O) | | | -484.85 | ± 0.33 | kJ/mol | 60.0520 ± 0.0017 | 64-19-7*852 |
|
Most Influential reactions involving CH3C(O)OH (aq)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 1.000 | 4805.1 | CH3C(O)OH (aq) → [CH3C(O)O]- (aq) + H+ (aq)  | ΔrH°(298.15 K) = 0 ± 0 cm-1 | triv | 0.985 | 4611.4 | CH3C(O)OH (aq, undissoc) → CH3C(O)OH (aq)  | ΔrG°(298.15 K) = 27.147 ± 0.010 kJ/mol | Harned 1932, 3rd Law, est unc | 0.956 | 4612.1 | CH3C(O)OH (aq, 100 H2O) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = -0.42 ± 0.20 kJ/mol | NBS Tables 1989, NBS TN270, Parker 1965 | 0.264 | 4609.1 | CH3C(O)OH (cr,l) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = -0.360 ± 0.100 kcal/mol | Parker 1965, NBS Tables 1989, est unc | 0.117 | 4609.7 | CH3C(O)OH (cr,l) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = -0.350 ± 0.150 kcal/mol | Berthelot 1875b, Parker 1965, est unc | 0.117 | 4609.5 | CH3C(O)OH (cr,l) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = -0.364 ± 0.150 kcal/mol | Thomsen 1882, Parker 1965, est unc | 0.117 | 4609.4 | CH3C(O)OH (cr,l) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = -0.326 ± 0.150 kcal/mol | Pickering 1895, Parker 1965, est unc | 0.117 | 4609.2 | CH3C(O)OH (cr,l) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = -0.361 ± 0.150 kcal/mol | Pritchard 1950, Parker 1965, est unc | 0.117 | 4609.3 | CH3C(O)OH (cr,l) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = -0.347 ± 0.150 kcal/mol | Klibanova 1933, Parker 1965, est unc | 0.081 | 4609.6 | CH3C(O)OH (cr,l) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = -0.446 ± 0.180 kcal/mol | Carson 1949, Parker 1965, est unc | 0.027 | 4085.1 | CH2CO (g) + [OH]- (aq) + H+ (aq) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = -49.79 ± 0.41 kcal/mol | Nuttall 1971 | 0.011 | 4611.2 | CH3C(O)OH (aq, undissoc) → CH3C(O)OH (aq)  | ΔrG°(298.15 K) = 27.238 ± 0.010 (×9.11) kJ/mol | Kinart 2019, 3rd Law, est unc | 0.000 | 4085.2 | CH2CO (g) + [OH]- (aq) + H+ (aq) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = -47.18 ± 2.5 kcal/mol | Rice 1934, est unc | 0.000 | 4611.9 | CH3C(O)OH (aq, undissoc) → CH3C(O)OH (aq)  | ΔrG°(298.15 K) = 27.15 ± 0.40 kJ/mol | NBS Tables 1989, Parker 1965 | 0.000 | 4611.8 | CH3C(O)OH (aq, undissoc) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = -0.25 ± 0.40 kJ/mol | NBS Tables 1989, Parker 1965 | 0.000 | 4611.6 | CH3C(O)OH (aq, undissoc) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = 0.06 ± 0.50 kJ/mol | Ellis 1963a, 2nd Law, est unc | 0.000 | 4611.7 | CH3C(O)OH (aq, undissoc) → CH3C(O)OH (aq)  | ΔrG°(298.15 K) = 27.13 ± 0.50 kJ/mol | Ellis 1963a, 3rd Law, est unc | 0.000 | 4611.3 | CH3C(O)OH (aq, undissoc) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = 0.20 ± 0.50 (×1.044) kJ/mol | Harned 1932, 2nd Law, est unc | 0.000 | 4611.5 | CH3C(O)OH (aq, undissoc) → CH3C(O)OH (aq)  | ΔrG°(298.15 K) = 27.23 ± 0.60 kJ/mol | Wilsdon 1913, Kinart 2019, est unc | 0.000 | 4611.1 | CH3C(O)OH (aq, undissoc) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = -2.66 ± 0.50 (×4.757) kJ/mol | Kinart 2019, 2nd Law, est unc |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.124 of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2022; available at ATcT.anl.gov [DOI: 10.17038/CSE/1885923]
|
4
|
|
Y. Ren, L. Zhou, A. Mellouki, V. Daële, M. Idir, S. S. Brown, B. Ruscic, Robert S. Paton, M. R. McGillen, and A. R. Ravishankara,
Reactions of NO3 with Aromatic Aldehydes: Gas-Phase Kinetics and Insights into the Mechanism of the Reaction.
Atmos. Chem. Phys. 21, 13537-13551 (2021)
[DOI: 10.5194/acp2021-228]
|
5
|
|
B. Ruscic and D. H. Bross,
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021)
[DOI: 10.1080/00268976.2021.1969046]
|
6
|
|
J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021)
[DOI: 10.1063/5.0069322]
|
7
|
|
T. L. Nguyen, D. H. Bross, B. Ruscic, G. B. Ellison, and J. F. Stanton,
Mechanism, Thermochemistry, and Kinetics of the Reversible Reactions: C2H3 + H2 ⇌ C2H4 + H ⇌ C2H5.
Faraday Discuss. , (Advance Article) (2022)
[DOI: 10.1039/D1FD00124H]
|
8
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
9
|
|
B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019)
[DOI: 10.1016/B978-0-444-64087-1.00001-2]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [8,9]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|