Selected ATcT [1, 2] enthalpy of formation based on version 1.124 of the Thermochemical Network [3]This version of ATcT results was generated by additional expansion of version 1.122x [4] to include additional information relevant to the study of thermophysical and thermochemical properties of CH2 and CH3 using nonrigid rotor anharmonic oscillator (NRRAO) partition functions [5], the development and benchmarking of a state-of-the-art computational approach that aims to reproduce total atomization energies of small molecules within 10–15 cm-1 [6], as well as the study of the reversible reaction C2H3 + H2 ⇌ C2H4 + H ⇌ C2H5 [7] |
||||||||
Xenon | ||||||||
Formula: Xe (g) | ||||||||
CAS RN: 7440-63-3 | ||||||||
ATcT ID: 7440-63-3*0 | ||||||||
SMILES: [Xe] | ||||||||
InChI: InChI=1S/Xe | ||||||||
InChIKey: FHNFHKCVQCLJFQ-UHFFFAOYSA-N | ||||||||
Hills Formula: Xe1 | ||||||||
2D Image: | ||||||||
Aliases: Xe; Xenon; Xenon atom; Atomic xenon; UN 2036; UN 2591 | ||||||||
Relative Molecular Mass: 131.2900 ± 0.0200 | ||||||||
| ||||||||
3D Image of Xe (g) | ||||||||
spin ON spin OFF | ||||||||
1 |
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner, Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited. J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y] |
|
2 |
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner, Active Thermochemical Tables: Thermochemistry for the 21st Century. J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078] |
|
3 |
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.124 of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2022; available at ATcT.anl.gov [DOI: 10.17038/CSE/1885923] |
|
4 |
Y. Ren, L. Zhou, A. Mellouki, V. Daële, M. Idir, S. S. Brown, B. Ruscic, Robert S. Paton, M. R. McGillen, and A. R. Ravishankara, Reactions of NO3 with Aromatic Aldehydes: Gas-Phase Kinetics and Insights into the Mechanism of the Reaction. Atmos. Chem. Phys. 21, 13537-13551 (2021) [DOI: 10.5194/acp2021-228] |
|
5 |
B. Ruscic and D. H. Bross, Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects. Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046] |
|
6 |
J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton, Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322] |
|
7 |
T. L. Nguyen, D. H. Bross, B. Ruscic, G. B. Ellison, and J. F. Stanton, Mechanism, Thermochemistry, and Kinetics of the Reversible Reactions: C2H3 + H2 ⇌ C2H4 + H ⇌ C2H5. Faraday Discuss. , (Advance Article) (2022) [DOI: 10.1039/D1FD00124H] |
|
8 |
B. Ruscic, Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables. Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605] |
|
9 |
B. Ruscic and D. H. Bross, Thermochemistry Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2] |