Selected ATcT [1, 2] enthalpy of formation based on version 1.122r of the Thermochemical Network [3] This version of ATcT results was generated from an expansion of version 1.122q [4, 5] to include a non-rigid rotor anharmonic oscillator (NRRAO) partition function for hydroxymethyl [6], as well as data on 42 additional species, some of which are related to soot formation mechanisms.
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Ethyl iodide | CH3CH2I (g) | | 8.70 | -7.18 | ± 0.49 | kJ/mol | 155.9656 ± 0.0016 | 75-03-6*0 |
|
Representative Geometry of CH3CH2I (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of CH3CH2I (g)The 9 contributors listed below account for 93.4% of the provenance of ΔfH° of CH3CH2I (g).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 66.1 | 5006.1 | 2 CH3CH2I (l) + 13/2 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l) + I2 (cr,l)  | ΔrH°(298.15 K) = -2925.00 ± 1.16 kJ/mol | Carson 1994 | 7.8 | 5007.1 | 2 CH3CH2I (l) + H2 (g) → 2 CH3CH3 (g) + I2 (cr,l)  | ΔrH°(298.15 K) = -21.2 ± 0.8 kcal/mol | Ashcroft 1965, Cox 1970 | 7.4 | 5004.2 | CH3CH2I (g) → [CH3CH2]+ (g) + I (g)  | ΔrH°(0 K) = 10.52 ± 0.01 (×1.682) eV | Rosenstock 1982 | 5.2 | 5004.4 | CH3CH2I (g) → [CH3CH2]+ (g) + I (g)  | ΔrH°(0 K) = 10.52 ± 0.02 eV | Traeger 1981, AE corr, note unc2 | 2.1 | 5004.1 | CH3CH2I (g) → [CH3CH2]+ (g) + I (g)  | ΔrH°(0 K) = 10.534 ± 0.008 (×3.914) eV | Borkar 2010 | 1.3 | 5009.2 | CH3CH2I (l) + CH3 (g) → CH3I (l) + CH3CH2 (g)  | ΔrG°(298.15 K) = -7.5 ± 4 kJ/mol | Castelhano 1982, note unc3 | 1.3 | 5004.3 | CH3CH2I (g) → [CH3CH2]+ (g) + I (g)  | ΔrH°(0 K) = 10.49 ± 0.04 eV | Baer 1980 | 1.2 | 5006.3 | 2 CH3CH2I (l) + 13/2 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l) + I2 (cr,l)  | ΔrH°(298.15 K) = -701.0 ± 2.0 (×1.022) kcal/mol | Springall 1949, Cox 1970 | 0.8 | 5004.5 | CH3CH2I (g) → [CH3CH2]+ (g) + I (g)  | ΔrH°(0 K) = 10.50 ± 0.05 eV | Akopyan 1970, Rosenstock 1982 |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3CH2I (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 99.2 | Ethyl iodide | CH3CH2I (l) | | -9.41 | -39.28 | ± 0.49 | kJ/mol | 155.9656 ± 0.0016 | 75-03-6*500 | 14.8 | Ethylium | [CH3CH2]+ (g) | | 914.95 | 902.88 | ± 0.30 | kJ/mol | 29.0606 ± 0.0016 | 14936-94-8*0 | 11.6 | Water | H2O (g, para) | | -238.929 | -241.832 | ± 0.026 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*2 | 11.6 | Water | H2O (g) | | -238.929 | -241.832 | ± 0.026 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*0 | 11.6 | Water | H2O (cr, l, eq.press.) | | -286.300 | -285.828 | ± 0.026 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*499 | 11.6 | Water | H2O (l, eq.press.) | | | -285.828 | ± 0.026 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*589 | 11.6 | Oxonium | [H3O]+ (aq) | | | -285.826 | ± 0.026 | kJ/mol | 19.02267 ± 0.00037 | 13968-08-6*800 | 11.6 | Water | H2O (l) | | | -285.826 | ± 0.026 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*590 | 11.6 | Water | H2O (cr,l) | | -286.298 | -285.826 | ± 0.026 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*500 | 11.6 | Water | H2O (g, ortho) | | -238.644 | -241.832 | ± 0.026 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*1 |
|
Most Influential reactions involving CH3CH2I (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.928 | 5005.1 | CH3CH2I (l) → CH3CH2I (g)  | ΔrH°(298.15 K) = 32.08 ± 0.06 kJ/mol | Wadso 1968, Pedley 1986 | 0.107 | 5004.2 | CH3CH2I (g) → [CH3CH2]+ (g) + I (g)  | ΔrH°(0 K) = 10.52 ± 0.01 (×1.682) eV | Rosenstock 1982 | 0.075 | 5004.4 | CH3CH2I (g) → [CH3CH2]+ (g) + I (g)  | ΔrH°(0 K) = 10.52 ± 0.02 eV | Traeger 1981, AE corr, note unc2 | 0.033 | 5005.4 | CH3CH2I (l) → CH3CH2I (g)  | ΔrH°(302.530 K) = 7.697 ± 0.044 (×1.719) kcal/mol | de Kolossowsky 1934, ThermoData 2004, est unc | 0.030 | 5004.1 | CH3CH2I (g) → [CH3CH2]+ (g) + I (g)  | ΔrH°(0 K) = 10.534 ± 0.008 (×3.914) eV | Borkar 2010 | 0.024 | 5005.3 | CH3CH2I (l) → CH3CH2I (g)  | ΔrH°(298.15 K) = 32.47 ± 0.34 (×1.091) kJ/mol | ThermoData 2004 | 0.018 | 5004.3 | CH3CH2I (g) → [CH3CH2]+ (g) + I (g)  | ΔrH°(0 K) = 10.49 ± 0.04 eV | Baer 1980 | 0.012 | 5004.5 | CH3CH2I (g) → [CH3CH2]+ (g) + I (g)  | ΔrH°(0 K) = 10.50 ± 0.05 eV | Akopyan 1970, Rosenstock 1982 | 0.010 | 5005.5 | CH3CH2I (l) → CH3CH2I (g)  | ΔrH°(344.482 K) = 7.285 ± 0.10 (×1.354) kcal/mol | Kahlenberg 1901, ThermoData 2004, est unc | 0.007 | 5003.2 | CH3CH2I (g) → CH3CH2 (g) + I (g)  | ΔrH°(0 K) = 235 ± 6 kJ/mol | Skorobogatov 2003a, note unc | 0.007 | 5003.1 | CH3CH2I (g) → CH3CH2 (g) + I (g)  | ΔrH°(0 K) = 2.314 ± 0.06 (×1.091) eV | Bi 2007, note unc | 0.006 | 5003.3 | CH3CH2I (g) → CH3CH2 (g) + I (g)  | ΔrH°(0 K) = 223 ± 6 (×1.091) kJ/mol | Skorobogatov 1998, note unc3 | 0.002 | 5002.1 | 2 CH3CH2I (g) + 13/2 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l) + I2 (cr,l)  | ΔrH°(298.15 K) = -718.4 ± 5 kcal/mol | Thomsen 1882, Springall 1949, est unc | 0.001 | 5002.2 | 2 CH3CH2I (g) + 13/2 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l) + I2 (cr,l)  | ΔrH°(298.15 K) = -707.4 ± 5 (×1.384) kcal/mol | Thomsen 1905, Springall 1949, est unc | 0.000 | 5005.6 | CH3CH2I (l) → CH3CH2I (g)  | ΔrH°(341.250 K) = 30.242 ± 3.058 kJ/mol | Wilson 1989, 2nd Law, ThermoData 2004 | 0.000 | 5005.8 | CH3CH2I (l) → CH3CH2I (g)  | ΔrH°(298.426 K) = 33.441 ± 3.104 kJ/mol | ThermoData 2004, 2nd Law |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122r of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2021 [DOI: 10.17038/CSE/1822363]; available at ATcT.anl.gov
|
4
|
|
D. Feller, D. H. Bross, and B. Ruscic,
Enthalpy of Formation of C2H2O4 (Oxalic Acid) from High-Level Calculations and the Active Thermochemical Tables Approach.
J. Phys. Chem. A 123, 3481-3496 (2019)
[DOI: 10.1021/acs.jpca.8b12329]
|
5
|
|
B. K. Welch, R. Dawes, D. H. Bross, and B. Ruscic,
An Automated Thermochemistry Protocol Based on Explicitly Correlated Coupled-Cluster Theory: The Methyl and Ethyl Peroxy Families.
J. Phys. Chem. A 123, 5673-5682 (2019)
[DOI: 10.1021/acs.jpca.8b12329]
|
6
|
|
D. H. Bross, H.-G. Yu, L. B. Harding, and B. Ruscic,
Active Thermochemical Tables: The Partition Function of Hydroxymethyl (CH2OH) Revisited.
J. Phys. Chem. A 123, 4212-4231 (2019)
[DOI: 10.1021/acs.jpca.9b02295]
|
7
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
|