Selected ATcT [1, 2] enthalpy of formation based on version 1.122r of the Thermochemical Network [3] This version of ATcT results was generated from an expansion of version 1.122q [4, 5] to include a non-rigid rotor anharmonic oscillator (NRRAO) partition function for hydroxymethyl [6], as well as data on 42 additional species, some of which are related to soot formation mechanisms.
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Propynylidene | HCCCH (g, cis singlet) | | 597.6 | 599.4 | ± 1.3 | kJ/mol | 38.0480 ± 0.0024 | 67152-18-5*3 |
|
Representative Geometry of HCCCH (g, cis singlet) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of HCCCH (g, cis singlet)The 9 contributors listed below account for 40.6% of the provenance of ΔfH° of HCCCH (g, cis singlet).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 5.7 | 3047.7 | HCCCH (g, triplet) → HCCCH (g, cis singlet)  | ΔrH°(0 K) = 53.81 ± 4 kJ/mol | Aguilera-Iparraguirre 2008, est unc | 5.2 | 3055.1 | [HCCCH]- (g, transoid 2B) + HCCCH (g, triplet) → [HCCCH]- (g, cisoid 2A) + HCCCH (g, trans singlet)  | ΔrH°(0 K) = 0.583 ± 0.010 eV | Osborn 2014 | 5.1 | 3073.5 | HCCCH (g, cis singlet) → CH2CC (g)  | ΔrH°(0 K) = -10.53 ± 1.2 kcal/mol | Ruscic W1RO | 4.4 | 3073.2 | HCCCH (g, cis singlet) → CH2CC (g)  | ΔrH°(0 K) = -10.43 ± 1.3 kcal/mol | Ruscic G4 | 4.2 | 3054.4 | [HCCCH]- (g, transoid 2B) + HCCCH (g, cis singlet) → HCCCH (g, trans singlet) + [HCCCH]- (g, cisoid 2A)  | ΔrH°(0 K) = 227 ± 300 cm-1 | Ruscic W1RO | 4.0 | 3034.5 | [HCCCH]- (g, cisoid 2A) → HCCCH (g, cis singlet)  | ΔrH°(0 K) = 1.681 ± 0.050 eV | Ruscic W1RO | 3.9 | 3054.2 | [HCCCH]- (g, transoid 2B) + HCCCH (g, cis singlet) → HCCCH (g, trans singlet) + [HCCCH]- (g, cisoid 2A)  | ΔrH°(0 K) = 220 ± 310 cm-1 | Ruscic G4 | 3.8 | 3054.1 | [HCCCH]- (g, transoid 2B) + HCCCH (g, cis singlet) → HCCCH (g, trans singlet) + [HCCCH]- (g, cisoid 2A)  | ΔrH°(0 K) = 221 ± 315 cm-1 | Ruscic G3X | 3.8 | 3049.4 | HCCCH (g, cis singlet) → HCCCH (g, trans singlet)  | ΔrH°(0 K) = 1 ± 300 cm-1 | Ruscic W1RO |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of HCCCH (g, cis singlet) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 100.0 | Propynylidene | HCCCH (g, singlet) | | 597.6 | 599.4 | ± 1.3 | kJ/mol | 38.0480 ± 0.0024 | 67152-18-5*2 | 46.5 | Propynylidene | HCCCH (g, trans singlet) | | 597.4 | 599.2 | ± 1.1 | kJ/mol | 38.0480 ± 0.0024 | 67152-18-5*4 | 39.5 | Propynylidene | HCCCH (g, triplet) | | 543.45 | 546.45 | ± 0.65 | kJ/mol | 38.0480 ± 0.0024 | 67152-18-5*1 | 39.5 | Propynylidene | HCCCH (g) | | 543.45 | 546.45 | ± 0.65 | kJ/mol | 38.0480 ± 0.0024 | 67152-18-5*0 | 25.7 | Propargylenide | [HCCCH]- (g) | | 434.4 | 437.6 | ± 1.1 | kJ/mol | 38.0485 ± 0.0024 | 82906-05-6*0 | 25.7 | Propargylenide | [HCCCH]- (g, transoid 2B) | | 434.4 | 436.9 | ± 1.1 | kJ/mol | 38.0485 ± 0.0024 | 82906-05-6*1 | 22.8 | Propargylenide | [HCCCH]- (g, cisoid 2A) | | 436.9 | 439.4 | ± 1.1 | kJ/mol | 38.0485 ± 0.0024 | 82906-05-6*2 | 18.7 | Propadienylidene | CH2CC (g) | | 554.37 | 555.52 | ± 0.40 | kJ/mol | 38.0480 ± 0.0024 | 60731-10-4*0 | 18.3 | Propadienylidenide | [CH2CC]- (g) | | 381.11 | 382.01 | ± 0.41 | kJ/mol | 38.0485 ± 0.0024 | 109292-49-1*0 | 15.2 | Propynylidene cation | [HCCCH]+ (g) | | 1410.9 | 1413.4 | ± 1.3 | kJ/mol | 38.0474 ± 0.0024 | 75123-91-0*0 |
|
Most Influential reactions involving HCCCH (g, cis singlet)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 1.000 | 3046.1 | HCCCH (g, singlet) → HCCCH (g, cis singlet)  | ΔrH°(0 K) = 0.00 ± 0.00 cm-1 | Ruscic W1RO, Ruscic G4 | 0.112 | 3049.4 | HCCCH (g, cis singlet) → HCCCH (g, trans singlet)  | ΔrH°(0 K) = 1 ± 300 cm-1 | Ruscic W1RO | 0.105 | 3049.2 | HCCCH (g, cis singlet) → HCCCH (g, trans singlet)  | ΔrH°(0 K) = 35 ± 310 cm-1 | Ruscic G4 | 0.101 | 3049.1 | HCCCH (g, cis singlet) → HCCCH (g, trans singlet)  | ΔrH°(0 K) = 6 ± 315 cm-1 | Ruscic G3X | 0.095 | 3054.4 | [HCCCH]- (g, transoid 2B) + HCCCH (g, cis singlet) → HCCCH (g, trans singlet) + [HCCCH]- (g, cisoid 2A)  | ΔrH°(0 K) = 227 ± 300 cm-1 | Ruscic W1RO | 0.089 | 3054.2 | [HCCCH]- (g, transoid 2B) + HCCCH (g, cis singlet) → HCCCH (g, trans singlet) + [HCCCH]- (g, cisoid 2A)  | ΔrH°(0 K) = 220 ± 310 cm-1 | Ruscic G4 | 0.086 | 3054.1 | [HCCCH]- (g, transoid 2B) + HCCCH (g, cis singlet) → HCCCH (g, trans singlet) + [HCCCH]- (g, cisoid 2A)  | ΔrH°(0 K) = 221 ± 315 cm-1 | Ruscic G3X | 0.086 | 3034.5 | [HCCCH]- (g, cisoid 2A) → HCCCH (g, cis singlet)  | ΔrH°(0 K) = 1.681 ± 0.050 eV | Ruscic W1RO | 0.082 | 3049.3 | HCCCH (g, cis singlet) → HCCCH (g, trans singlet)  | ΔrH°(0 K) = 5 ± 350 cm-1 | Ruscic CBS-n | 0.079 | 3047.7 | HCCCH (g, triplet) → HCCCH (g, cis singlet)  | ΔrH°(0 K) = 53.81 ± 4 kJ/mol | Aguilera-Iparraguirre 2008, est unc | 0.070 | 3054.3 | [HCCCH]- (g, transoid 2B) + HCCCH (g, cis singlet) → HCCCH (g, trans singlet) + [HCCCH]- (g, cisoid 2A)  | ΔrH°(0 K) = 220 ± 350 cm-1 | Ruscic CBS-n | 0.058 | 3034.2 | [HCCCH]- (g, cisoid 2A) → HCCCH (g, cis singlet)  | ΔrH°(0 K) = 1.678 ± 0.061 eV | Ruscic G4 | 0.057 | 3073.5 | HCCCH (g, cis singlet) → CH2CC (g)  | ΔrH°(0 K) = -10.53 ± 1.2 kcal/mol | Ruscic W1RO | 0.050 | 3047.5 | HCCCH (g, triplet) → HCCCH (g, cis singlet)  | ΔrH°(0 K) = 4924 ± 420 cm-1 | Ruscic W1RO | 0.049 | 3073.2 | HCCCH (g, cis singlet) → CH2CC (g)  | ΔrH°(0 K) = -10.43 ± 1.3 kcal/mol | Ruscic G4 | 0.044 | 3047.2 | HCCCH (g, triplet) → HCCCH (g, cis singlet)  | ΔrH°(0 K) = 4156 ± 450 cm-1 | Ruscic G4 | 0.042 | 3073.1 | HCCCH (g, cis singlet) → CH2CC (g)  | ΔrH°(0 K) = -10.49 ± 1.4 kcal/mol | Ruscic G3X | 0.037 | 3047.1 | HCCCH (g, triplet) → HCCCH (g, cis singlet)  | ΔrH°(0 K) = 4287 ± 490 cm-1 | Ruscic G3X | 0.032 | 3073.3 | HCCCH (g, cis singlet) → CH2CC (g)  | ΔrH°(0 K) = -10.95 ± 1.6 kcal/mol | Ruscic CBS-n | 0.029 | 3034.1 | [HCCCH]- (g, cisoid 2A) → HCCCH (g, cis singlet)  | ΔrH°(0 K) = 1.638 ± 0.085 eV | Ruscic G3X |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122r of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2021 [DOI: 10.17038/CSE/1822363]; available at ATcT.anl.gov
|
4
|
|
D. Feller, D. H. Bross, and B. Ruscic,
Enthalpy of Formation of C2H2O4 (Oxalic Acid) from High-Level Calculations and the Active Thermochemical Tables Approach.
J. Phys. Chem. A 123, 3481-3496 (2019)
[DOI: 10.1021/acs.jpca.8b12329]
|
5
|
|
B. K. Welch, R. Dawes, D. H. Bross, and B. Ruscic,
An Automated Thermochemistry Protocol Based on Explicitly Correlated Coupled-Cluster Theory: The Methyl and Ethyl Peroxy Families.
J. Phys. Chem. A 123, 5673-5682 (2019)
[DOI: 10.1021/acs.jpca.8b12329]
|
6
|
|
D. H. Bross, H.-G. Yu, L. B. Harding, and B. Ruscic,
Active Thermochemical Tables: The Partition Function of Hydroxymethyl (CH2OH) Revisited.
J. Phys. Chem. A 123, 4212-4231 (2019)
[DOI: 10.1021/acs.jpca.9b02295]
|
7
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
|