Selected ATcT [1, 2] enthalpy of formation based on version 1.122r of the Thermochemical Network [3] This version of ATcT results was generated from an expansion of version 1.122q [4, 5] to include a non-rigid rotor anharmonic oscillator (NRRAO) partition function for hydroxymethyl [6], as well as data on 42 additional species, some of which are related to soot formation mechanisms.
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Allene | CH2CCH2 (g) | | 197.27 | 189.78 | ± 0.24 | kJ/mol | 40.0639 ± 0.0024 | 463-49-0*0 |
|
Representative Geometry of CH2CCH2 (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of CH2CCH2 (g)The 9 contributors listed below account for 30.9% of the provenance of ΔfH° of CH2CCH2 (g).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 10.8 | 2897.2 | CH3CCH (g) → CH2CCH2 (g)  | ΔrG°(521.5 K) = 1.580 ± 0.062 kcal/mol | Cordes 1959, 3rd Law | 3.3 | 2896.14 | CH2CCH2 (g) + CH4 (g) → 2 CH2CH2 (g)  | ΔrH°(0 K) = -8.78 ± 0.8 kJ/mol | Ferguson 2013, est unc | 3.2 | 2895.11 | CH2CCH2 (g) + CH3CH3 (g) → CH3CHCH2 (g) + CH2CH2 (g)  | ΔrH°(0 K) = -8.02 ± 0.20 kcal/mol | Karton 2009b, Karton 2011 | 2.6 | 2894.1 | CH2CCH2 (g) + 2 H2 (g) → CH3CH2CH3 (g)  | ΔrH°(355.15 K) = -71.295 ± 0.20 (×1.325) kcal/mol | Kistiakowsky 1936 | 2.3 | 2884.1 | CH3CCH (g) + 4 O2 (g) → 3 CO2 (g) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -463.131 ± 0.204 kcal/mol | Wagman 1945, Wagman 1945a | 2.2 | 120.2 | 1/2 O2 (g) + H2 (g) → H2O (cr,l)  | ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/mol | Rossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930 | 2.1 | 2890.4 | CH2CCH2 (g) → 3 C (g) + 4 H (g)  | ΔrH°(0 K) = 669.33 ± 0.30 kcal/mol | Karton 2008 | 2.1 | 2890.3 | CH2CCH2 (g) → 3 C (g) + 4 H (g)  | ΔrH°(0 K) = 669.37 ± 0.30 kcal/mol | Karton 2009b, Karton 2011 | 2.0 | 2895.12 | CH2CCH2 (g) + CH3CH3 (g) → CH3CHCH2 (g) + CH2CH2 (g)  | ΔrH°(0 K) = -32.08 ± 0.8 (×1.325) kJ/mol | Ferguson 2013, est unc |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of CH2CCH2 (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 99.8 | Allene cation | [CH2CCH2]+ (g) | | 1132.06 | 1124.91 | ± 0.24 | kJ/mol | 40.0633 ± 0.0024 | 65812-77-3*0 | 68.2 | Propyne | CH3CCH (g) | | 192.70 | 185.64 | ± 0.22 | kJ/mol | 40.0639 ± 0.0024 | 74-99-7*0 | 41.4 | Ethylene | CH2CH2 (g) | | 60.84 | 52.32 | ± 0.12 | kJ/mol | 28.0532 ± 0.0016 | 74-85-1*0 | 41.4 | Ethylene cation | [CH2CH2]+ (g) | | 1075.15 | 1067.94 | ± 0.12 | kJ/mol | 28.0526 ± 0.0016 | 34470-02-5*0 | 38.9 | Propyne cation | [CH3CCH]+ (g) | | 1192.65 | 1186.93 | ± 0.38 | kJ/mol | 40.0633 ± 0.0024 | 34526-53-9*0 | 38.2 | Propene | CH3CHCH2 (g) | | 34.89 | 19.88 | ± 0.19 | kJ/mol | 42.0797 ± 0.0024 | 115-07-1*0 | 38.1 | Propylene cation | [CH3CHCH2]+ (g) | | 975.17 | 961.64 | ± 0.19 | kJ/mol | 42.0792 ± 0.0024 | 34504-10-4*0 | 37.6 | Carbon | C (g) | | 711.398 | 716.883 | ± 0.045 | kJ/mol | 12.01070 ± 0.00080 | 7440-44-0*0 | 37.6 | Carbon | C (g, triplet) | | 711.398 | 716.883 | ± 0.045 | kJ/mol | 12.01070 ± 0.00080 | 7440-44-0*1 | 37.6 | Carbon | C (g, quintuplet) | | 1114.961 | 1120.107 | ± 0.045 | kJ/mol | 12.01070 ± 0.00080 | 7440-44-0*3 |
|
Most Influential reactions involving CH2CCH2 (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122r of the Thermochemical Network, Argonne National Laboratory, Lemont, Illinois 2021 [DOI: 10.17038/CSE/1822363]; available at ATcT.anl.gov
|
4
|
|
D. Feller, D. H. Bross, and B. Ruscic,
Enthalpy of Formation of C2H2O4 (Oxalic Acid) from High-Level Calculations and the Active Thermochemical Tables Approach.
J. Phys. Chem. A 123, 3481-3496 (2019)
[DOI: 10.1021/acs.jpca.8b12329]
|
5
|
|
B. K. Welch, R. Dawes, D. H. Bross, and B. Ruscic,
An Automated Thermochemistry Protocol Based on Explicitly Correlated Coupled-Cluster Theory: The Methyl and Ethyl Peroxy Families.
J. Phys. Chem. A 123, 5673-5682 (2019)
[DOI: 10.1021/acs.jpca.8b12329]
|
6
|
|
D. H. Bross, H.-G. Yu, L. B. Harding, and B. Ruscic,
Active Thermochemical Tables: The Partition Function of Hydroxymethyl (CH2OH) Revisited.
J. Phys. Chem. A 123, 4212-4231 (2019)
[DOI: 10.1021/acs.jpca.9b02295]
|
7
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
|