Selected ATcT [1, 2] enthalpy of formation based on version 1.122p of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122o [4] to include an updated enthalpy of formation for Hydrazine. [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Nirous oxide cation[NNO]+ (g)N#[N+]=O1329.671326.78± 0.12kJ/mol44.01233 ±
0.00033
12269-46-4*0

Representative Geometry of [NNO]+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [NNO]+ (g)

The 7 contributors listed below account for 90.5% of the provenance of ΔfH° of [NNO]+ (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
52.41266.1 NNO (g) H2 (g) → H2O (cr,l) N2 (g) ΔrH°(293.15 K) = -368.578 ± 0.109 kJ/molFenning 1933, note N2Oa
22.21259.1 NNO (g) → [NNO]+ (g) ΔrH°(0 K) = 103963 ± 5 cm-1Wiedmann 1991
11.61264.4 NNO (g) CO (g) → CO2 (g) N2 (g) ΔrH°(293.15 K) = -365.642 ± 0.243 kJ/molFenning 1933, note N2Oa
1.31259.2 NNO (g) → [NNO]+ (g) ΔrH°(0 K) = 103980 ± 20 cm-1Frey 1978
1.2118.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
0.81265.1 NNO (g) → N2 (g) + 1/2 O2 (g) ΔrH°(293.15 K) = -19.53 ± 0.08 (×2.65) kcal/molCarlton-Sutton 1936
0.71270.1 NNO (g) → [N2]+ (g) O- (g) ΔrH°(0 K) = 15.784 ± 0.010 eVMitsuke 1990

Top 10 species with enthalpies of formation correlated to the ΔfH° of [NNO]+ (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
86.4 Nitrous oxideNNO (g)[N-]=[N+]=O85.99682.567± 0.097kJ/mol44.01288 ±
0.00033
10024-97-2*0
17.3 WaterH2O (g, ortho)O-238.648-241.836± 0.026kJ/mol18.01528 ±
0.00033
7732-18-5*1
17.3 WaterH2O (g, para)O-238.933-241.836± 0.026kJ/mol18.01528 ±
0.00033
7732-18-5*2
17.3 WaterH2O (g)O-238.933-241.836± 0.026kJ/mol18.01528 ±
0.00033
7732-18-5*0
17.3 WaterH2O (cr, l, eq.press.)O-286.304-285.832± 0.026kJ/mol18.01528 ±
0.00033
7732-18-5*499
17.3 WaterH2O (l, eq.press.)O-285.832± 0.026kJ/mol18.01528 ±
0.00033
7732-18-5*589
17.3 WaterH2O (l)O-285.830± 0.026kJ/mol18.01528 ±
0.00033
7732-18-5*590
17.3 Oxonium[H3O]+ (aq)[OH3+]-285.830± 0.026kJ/mol19.02267 ±
0.00037
13968-08-6*800
17.3 WaterH2O (cr,l)O-286.302-285.830± 0.026kJ/mol18.01528 ±
0.00033
7732-18-5*500
17.3 WaterH2O (cr)O-286.302-292.743± 0.026kJ/mol18.01528 ±
0.00033
7732-18-5*510

Most Influential reactions involving [NNO]+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.8801259.1 NNO (g) → [NNO]+ (g) ΔrH°(0 K) = 103963 ± 5 cm-1Wiedmann 1991
0.0551259.2 NNO (g) → [NNO]+ (g) ΔrH°(0 K) = 103980 ± 20 cm-1Frey 1978
0.0231259.4 NNO (g) → [NNO]+ (g) ΔrH°(0 K) = 12.886 ± 0.002 (×1.915) eVBerkowitz 1977
0.0131259.8 NNO (g) → [NNO]+ (g) ΔrH°(0 K) = 12.893 ± 0.005 eVBrundle 1969
0.0072267.1 NNO (g) [HNC]+ (g) → [NNO]+ (g) HCN (g) ΔrG°(298.15 K) = 0.33 ± 0.15 eVBieri 1978, est unc
0.0061259.9 NNO (g) → [NNO]+ (g) ΔrH°(0 K) = 12.888 ± 0.007 eVDibeler 1967
0.0051259.7 NNO (g) → [NNO]+ (g) ΔrH°(0 K) = 12.891 ± 0.008 eVCollin 1969a
0.0051259.10 NNO (g) → [NNO]+ (g) ΔrH°(0 K) = 12.882 ± 0.008 eVNicholson 1965
0.0031259.3 NNO (g) → [NNO]+ (g) ΔrH°(0 K) = 104000 ± 80 cm-1Tanaka 1960, est unc
0.0031259.6 NNO (g) → [NNO]+ (g) ΔrH°(0 K) = 12.88 ± 0.01 eVCoppens 1974
0.0031259.5 NNO (g) → [NNO]+ (g) ΔrH°(0 K) = 12.89 ± 0.01 eVKimura 1981
0.0001262.8 [NNO]+ (g) → 2 N (g) O (g) ΔrH°(0 K) = -35.36 ± 1.50 kcal/molRuscic W1RO
0.0001262.4 [NNO]+ (g) → 2 N (g) O (g) ΔrH°(0 K) = -33.06 ± 1.60 kcal/molRuscic G4
0.0001262.7 [NNO]+ (g) → 2 N (g) O (g) ΔrH°(0 K) = -33.34 ± 1.60 kcal/molRuscic CBS-n
0.0001262.3 [NNO]+ (g) → 2 N (g) O (g) ΔrH°(0 K) = -33.33 ± 1.72 kcal/molRuscic G3X
0.0001260.8 NNO (g) → [NNO]+ (g) ΔrH°(0 K) = 12.933 ± 0.040 (×1.091) eVRuscic W1RO
0.0001260.4 NNO (g) → [NNO]+ (g) ΔrH°(0 K) = 12.890 ± 0.073 eVRuscic G4
0.0001260.7 NNO (g) → [NNO]+ (g) ΔrH°(0 K) = 12.896 ± 0.075 eVRuscic CBS-n
0.0001260.3 NNO (g) → [NNO]+ (g) ΔrH°(0 K) = 12.906 ± 0.093 eVRuscic G3X
0.0001260.6 NNO (g) → [NNO]+ (g) ΔrH°(0 K) = 12.886 ± 0.099 eVRuscic CBS-n


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122p of the Thermochemical Network (2020); available at ATcT.anl.gov
4   P. B. Changala, T. L. Nguyen, J. H. Baraban, G. B. Ellison, J. F. Stanton, D. H. Bross, and B. Ruscic,
Active Thermochemical Tables: The Adiabatic Ionization Energy of Hydrogen Peroxide.
J. Phys. Chem. A 121, 8799-8806 (2017) [DOI: 10.1021/acs.jpca.7b06221] (highlighted on the journal cover)
5   D. Feller, D. H. Bross, and B. Ruscic,
Enthalpy of Formation of N2H4 (Hydrazine) Revisited.
J. Phys. Chem. A 121, 6187-6198 (2017) [DOI: 10.1021/acs.jpca.7b06017]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.