Selected ATcT [1, 2] enthalpy of formation based on version 1.122p of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122o [4] to include an updated enthalpy of formation for Hydrazine. [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Dioxidanide[HO2]- (g)O[O-]-88.87-91.53± 0.34kJ/mol33.00729 ±
0.00060
14691-59-9*0

Representative Geometry of [HO2]- (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [HO2]- (g)

The 20 contributors listed below account only for 88.7% of the provenance of ΔfH° of [HO2]- (g).
A total of 24 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
25.3268.1 [HO2]- (g) → HO2 (g) ΔrH°(0 K) = 1.078 ± 0.006 eVRamond 2002
25.3268.2 [HO2]- (g) → HO2 (g) ΔrH°(0 K) = 1.078 ± 0.006 eVRamond 2001, Clifford 1998
11.5273.1 1/2 H2 (g) O2 (g) → [HO2]- (g) ΔrH°(0 K) = -88.80 ± 1.0 kJ/molGanyecz 2015, est unc
9.1268.15 [HO2]- (g) → HO2 (g) ΔrH°(0 K) = 1.076 ± 0.010 eVGanyecz 2015, est unc
3.1268.3 [HO2]- (g) → HO2 (g) ΔrH°(0 K) = 1.078 ± 0.017 eVOakes 1985
2.8288.1 F- (g) H2O2 (g) → [HO2]- (g) HF (g) ΔrG°(298.15 K) = 12.3 ± 1.8 (×1.114) kJ/molBierbaum 1981, note unc4
2.8289.1 H2O2 (g) [CCH]- (g) → [HO2]- (g) HCCH (g) ΔrG°(298.15 K) = -0.85 ± 0.48 kcal/molRamond 2002, note unc4
1.0281.8 H2O2 (g) [OH]- (g) → [HO2]- (g) H2O (g) ΔrH°(0 K) = -14.31 ± 0.8 kcal/molRuscic W1RO, Ruscic W1U
0.8280.8 H2O2 (g) → [HO2]- (g) H+ (g) ΔrH°(0 K) = 375.25 ± 0.90 kcal/molRuscic W1RO, Ruscic W1U
0.7266.4 HO2 (g) → H (g) + 2 O (g) ΔrH°(0 K) = 694.85 ± 0.56 kJ/molHarding 2008
0.7268.14 [HO2]- (g) → HO2 (g) ΔrH°(0 K) = 1.110 ± 0.035 eVParthiban 2001
0.6281.7 H2O2 (g) [OH]- (g) → [HO2]- (g) H2O (g) ΔrH°(0 K) = -14.12 ± 1.0 kcal/molRuscic CBS-n
0.6281.4 H2O2 (g) [OH]- (g) → [HO2]- (g) H2O (g) ΔrH°(0 K) = -13.50 ± 1.0 kcal/molRuscic G4
0.6276.5 HO2 (g) → H (g) O2 (g) ΔrH°(0 K) = 48.02 ± 0.15 kcal/molFlowers 2004, est unc
0.6264.8 HO2 (g) → H (g) + 2 O (g) ΔrH°(0 K) = 166.00 ± 0.15 kcal/molFlowers 2004, est unc
0.5278.1 OH (g) O2 (g) → HO2 (g) O (g) ΔrH°(0 K) = 53.81 ± 0.15 kcal/molFlowers 2004, est unc
0.5277.4 HO2 (g) → OH (g) O (g) ΔrH°(0 K) = 64.16 ± 0.15 kcal/molFlowers 2004, est unc
0.5281.3 H2O2 (g) [OH]- (g) → [HO2]- (g) H2O (g) ΔrH°(0 K) = -14.44 ± 1.1 kcal/molRuscic G3X
0.4266.2 HO2 (g) → H (g) + 2 O (g) ΔrH°(0 K) = 695.10 ± 0.70 kJ/molHarding 2008
0.4267.1 HO2 (g) → [HO2]+ (g) ΔrH°(0 K) = 11.352 ± 0.007 eVLitorja 1998a

Top 10 species with enthalpies of formation correlated to the ΔfH° of [HO2]- (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
33.5 DioxidanylHO2 (g)O[O]15.1212.22± 0.15kJ/mol33.00674 ±
0.00060
3170-83-0*0
4.8 2-Hydrotrioxy anion[OO(H)O]- (g)[O][OH][O-]27.521.8± 1.4kJ/mol49.00669 ±
0.00090
*89965-38-8*0
4.1 FluorodioxidanylFOO (g)FO[O]26.8125.10± 0.26kJ/mol50.99720 ±
0.00060
15499-23-7*0
4.1 Hydrogen peroxideH2O2 (g, ortho)OO-129.459-135.466± 0.063kJ/mol34.01468 ±
0.00062
7722-84-1*1
4.1 Hydrogen peroxideH2O2 (g, para)OO-129.480-135.466± 0.063kJ/mol34.01468 ±
0.00062
7722-84-1*2
4.1 Hydrogen peroxideH2O2 (g)OO-129.480-135.466± 0.063kJ/mol34.01468 ±
0.00062
7722-84-1*0
4.0 ChlorodioxidanylClOO (g)ClO[O]103.91102.82± 0.37kJ/mol67.4515 ±
0.0011
17376-09-9*0
4.0 Peroxyhypochlorite[ClOO]- (g)ClO[O-]-249.22-248.20± 0.37kJ/mol67.4520 ±
0.0011
224299-14-3*0
3.7 HydroxylOH (g)[OH]37.24837.488± 0.026kJ/mol17.00734 ±
0.00031
3352-57-6*0
3.7 Hydroxyde[OH]- (g)[OH-]-139.093-139.060± 0.026kJ/mol17.00789 ±
0.00031
14280-30-9*0

Most Influential reactions involving [HO2]- (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.309268.1 [HO2]- (g) → HO2 (g) ΔrH°(0 K) = 1.078 ± 0.006 eVRamond 2002
0.309268.2 [HO2]- (g) → HO2 (g) ΔrH°(0 K) = 1.078 ± 0.006 eVRamond 2001, Clifford 1998
0.115273.1 1/2 H2 (g) O2 (g) → [HO2]- (g) ΔrH°(0 K) = -88.80 ± 1.0 kJ/molGanyecz 2015, est unc
0.111268.15 [HO2]- (g) → HO2 (g) ΔrH°(0 K) = 1.076 ± 0.010 eVGanyecz 2015, est unc
0.093287.1 [CF3]- (g) H2O2 (g) → [HO2]- (g) CHF3 (g) ΔrG°(298.15 K) = -3.1 ± 1.8 (×3.221) kJ/molBierbaum 1981, note unc4
0.046394.8 [OO(H)O]- (g) → [HO2]- (g) O (g) ΔrH°(0 K) = 30.73 ± 1.50 kcal/molRuscic W1RO
0.040394.7 [OO(H)O]- (g) → [HO2]- (g) O (g) ΔrH°(0 K) = 31.64 ± 1.60 kcal/molRuscic CBS-n
0.040394.4 [OO(H)O]- (g) → [HO2]- (g) O (g) ΔrH°(0 K) = 31.00 ± 1.60 kcal/molRuscic G4
0.038268.3 [HO2]- (g) → HO2 (g) ΔrH°(0 K) = 1.078 ± 0.017 eVOakes 1985
0.035394.3 [OO(H)O]- (g) → [HO2]- (g) O (g) ΔrH°(0 K) = 31.13 ± 1.72 kcal/molRuscic G3X
0.033289.1 H2O2 (g) [CCH]- (g) → [HO2]- (g) HCCH (g) ΔrG°(298.15 K) = -0.85 ± 0.48 kcal/molRamond 2002, note unc4
0.029288.1 F- (g) H2O2 (g) → [HO2]- (g) HF (g) ΔrG°(298.15 K) = 12.3 ± 1.8 (×1.114) kJ/molBierbaum 1981, note unc4
0.022394.6 [OO(H)O]- (g) → [HO2]- (g) O (g) ΔrH°(0 K) = 32.00 ± 2.16 kcal/molRuscic CBS-n
0.012374.1 [HOOO]- (g, gauche) → [HO2]- (g) O (g) ΔrH°(0 K) = 63 ± 3 (×1.164) kcal/molElliott 2003, est unc
0.010281.8 H2O2 (g) [OH]- (g) → [HO2]- (g) H2O (g) ΔrH°(0 K) = -14.31 ± 0.8 kcal/molRuscic W1RO, Ruscic W1U
0.009268.14 [HO2]- (g) → HO2 (g) ΔrH°(0 K) = 1.110 ± 0.035 eVParthiban 2001
0.008280.8 H2O2 (g) → [HO2]- (g) H+ (g) ΔrH°(0 K) = 375.25 ± 0.90 kcal/molRuscic W1RO, Ruscic W1U
0.006281.4 H2O2 (g) [OH]- (g) → [HO2]- (g) H2O (g) ΔrH°(0 K) = -13.50 ± 1.0 kcal/molRuscic G4
0.006281.7 H2O2 (g) [OH]- (g) → [HO2]- (g) H2O (g) ΔrH°(0 K) = -14.12 ± 1.0 kcal/molRuscic CBS-n
0.005281.3 H2O2 (g) [OH]- (g) → [HO2]- (g) H2O (g) ΔrH°(0 K) = -14.44 ± 1.1 kcal/molRuscic G3X


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122p of the Thermochemical Network (2020); available at ATcT.anl.gov
4   P. B. Changala, T. L. Nguyen, J. H. Baraban, G. B. Ellison, J. F. Stanton, D. H. Bross, and B. Ruscic,
Active Thermochemical Tables: The Adiabatic Ionization Energy of Hydrogen Peroxide.
J. Phys. Chem. A 121, 8799-8806 (2017) [DOI: 10.1021/acs.jpca.7b06221] (highlighted on the journal cover)
5   D. Feller, D. H. Bross, and B. Ruscic,
Enthalpy of Formation of N2H4 (Hydrazine) Revisited.
J. Phys. Chem. A 121, 6187-6198 (2017) [DOI: 10.1021/acs.jpca.7b06017]
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.