Selected ATcT [1, 2] enthalpy of formation based on version 1.122p of the Thermochemical Network [3]This version of ATcT results was generated from an expansion of version 1.122o [4] to include an updated enthalpy of formation for Hydrazine. [5]. |
||||||||||||||||||
| ||||||||||||||||||
Representative Geometry of He- (g, 2p3 4S3/2) | ||||||||||||||||||
spin ON spin OFF | ||||||||||||||||||
Top contributors to the provenance of ΔfH° of He- (g, 2p3 4S3/2)The 2 contributors listed below account for 93.5% of the provenance of ΔfH° of He- (g, 2p3 4S3/2).Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network. | ||||||||||||||||||
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference |
---|---|---|---|---|
0.806 | 5415.1 | He- (g, 2p3 4S3/2) → He (g)  | ΔrH°(0 K) = -59.3328 ± 0.010 eV | Turbiner 2013, Bylicki 1996, est unc, Tech 1971 |
0.129 | 5415.2 | He- (g, 2p3 4S3/2) → He (g)  | ΔrH°(0 K) = -59.337 ± 0.025 eV | Turbiner 2013, Bylicki 1996, Trabert 1992, Walter 1994, Tech 1971 |
0.032 | 5415.3 | He- (g, 2p3 4S3/2) → He (g)  | ΔrH°(0 K) = -59.357 ± 0.050 eV | Nicolaides 1981, est unc, Tech 1971 |
0.032 | 5415.4 | He- (g, 2p3 4S3/2) → He (g)  | ΔrH°(0 K) = -59.346 ± 0.050 eV | Chung 1979, est unc, Tech 1971 |
1 |
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner, Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited. J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y] |
|
2 |
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner, Active Thermochemical Tables: Thermochemistry for the 21st Century. J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078] |
|
3 |
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122p of the Thermochemical Network (2020); available at ATcT.anl.gov |
|
4 |
P. B. Changala, T. L. Nguyen, J. H. Baraban, G. B. Ellison, J. F. Stanton, D. H. Bross, and B. Ruscic, Active Thermochemical Tables: The Adiabatic Ionization Energy of Hydrogen Peroxide. J. Phys. Chem. A 121, 8799-8806 (2017) [DOI: 10.1021/acs.jpca.7b06221] (highlighted on the journal cover) |
|
5 |
D. Feller, D. H. Bross, and B. Ruscic, Enthalpy of Formation of N2H4 (Hydrazine) Revisited. J. Phys. Chem. A 121, 6187-6198 (2017) [DOI: 10.1021/acs.jpca.7b06017] |
|
6 |
B. Ruscic, Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables. Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605] |