Selected ATcT [1, 2] enthalpy of formation based on version 1.122o of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122h [4] to include the ionization energy of H2O2. [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Hydrogen bromideHBr (aq, 600 H2O)Br-120.44± 0.15kJ/mol80.9119 ±
0.0010
10035-10-6*834

Top contributors to the provenance of ΔfH° of HBr (aq, 600 H2O)

The 20 contributors listed below account only for 65.5% of the provenance of ΔfH° of HBr (aq, 600 H2O).
A total of 199 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
10.9994.1 Cl2 (g) + 2 Br- (aq) → Br2 (cr,l) + 2 Cl- (aq) ΔrH°(298.15 K) = -91.29 ± 0.40 (×2.134) kJ/molJohnson 1963, as quoted by CODATA Key Vals
10.9994.2 Cl2 (g) + 2 Br- (aq) → Br2 (cr,l) + 2 Cl- (aq) ΔrH°(298.15 K) = -91.29 ± 0.80 (×1.067) kJ/molSunner 1964, as quoted by CODATA Key Vals
7.3946.2 Br2 (cr,l) → Br2 (g) ΔrH°(298.15 K) = 7.386 ± 0.027 kcal/molHildenbrand 1958
5.1978.1 HBr (g) → HBr (aq, 2570 H2O) ΔrH°(298.15 K) = -20.286 ± 0.012 kcal/molVanderzee 1963
4.81004.1 [HBr]+ (g) → H (g) Br+ (g) ΔrH°(0 K) = 31394.5 ± 20 (×2.181) cm-1Haugh 1971, Norling 1935
3.1974.1 1/2 H2 (g) + 1/2 Br2 (cr,l) → HBr (aq) ΔrG°(298.15 K) = -102.81 ± 0.80 kJ/molJones 1934, as quoted by CODATA Key Vals
2.6972.1 1/2 H2 (g) + 1/2 Br2 (g) → HBr (g) ΔrH°(376.15 K) = -12.470 ± 0.170 kcal/molLacher 1956a, Lacher 1956
2.64413.1 CH3Br (g) → [CH3]+ (g) Br (g) ΔrH°(0 K) = 12.834 ± 0.002 eVSong 2001
1.9994.3 Cl2 (g) + 2 Br- (aq) → Br2 (cr,l) + 2 Cl- (aq) ΔrH°(298.15 K) = -91.55 ± 2.00 kJ/molThomsen 1882, as quoted by CODATA Key Vals
1.91102.1 Br2 (cr,l) + 3 I- (aq) → [I3]- (aq) + 2 Br- (aq) ΔrH°(298.15 K) = -29.355 ± 0.364 kcal/molWu 1963
1.8965.12 HBr (g) → H (g) Br (g) ΔrH°(0 K) = 86.47 ± 0.2 kcal/molFeller 2008
1.8966.6 HBr (g) Cl (g) → HCl (g) Br (g) ΔrH°(0 K) = -15.68 ± 0.2 kcal/molFeller 2008
1.81090.1 HI (g) Br (g) → HBr (g) I (g) ΔrH°(0 K) = -16.14 ± 0.2 kcal/molFeller 2008
1.64740.1 CH3CH2Br (g) → [CH3CH2]+ (g) Br (g) ΔrH°(0 K) = 11.130 ± 0.005 eVBaer 2000
1.41004.3 [HBr]+ (g) → H (g) Br+ (g) ΔrH°(0 K) = 31358 ± 15 (×5.301) cm-1Penno 1998, Norling 1935, est unc
1.41913.1 CH4 (g) Br (g) → CH3 (g) HBr (g) ΔrH°(0 K) = 5929 ± 80 cm-1Czako 2013
1.04397.1 CH3Cl (g) + 3/2 O2 (g) → CO2 (g) H2O (cr,l) HCl (aq, 600 H2O) ΔrH°(298.15 K) = -764.00 ± 0.50 (×1.61) kJ/molFletcher 1971
0.94917.1 CBr2O (l) H2O (cr,l) → CO2 (g) + 2 HBr (aq, 5000 H2O) ΔrH°(298.15 K) = -49.06 ± 0.32 kcal/molAnthoney 1970, as quoted by Pedley 1986
0.92554.2 HCO (g) HBr (g) → CH2O (g) Br (g) ΔrG°(385 K) = 6.79 ± 0.64 (×1.874) kJ/molBecerra 1997, Nava 1981, 3rd Law, note unc
0.84739.1 CH2CH2 (g) HBr (g) → CH3CH2Br (g) ΔrG°(546 K) = -8.340 ± 0.203 kJ/molLane 1953, 3rd Law

Top 10 species with enthalpies of formation correlated to the ΔfH° of HBr (aq, 600 H2O)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.8 Hydrogen bromideHBr (aq, 1000 H2O)Br-120.54± 0.15kJ/mol80.9119 ±
0.0010
10035-10-6*839
99.7 Hydrogen bromideHBr (aq, 2000 H2O)Br-120.64± 0.15kJ/mol80.9119 ±
0.0010
10035-10-6*841
99.7 Hydrogen bromideHBr (aq)Br-120.93± 0.15kJ/mol80.9119 ±
0.0010
10035-10-6*800
99.7 BromideBr- (aq)[Br-]-120.93± 0.15kJ/mol79.90455 ±
0.00100
24959-67-9*800
99.7 Hydrogen bromideHBr (aq, 3000 H2O)Br-120.69± 0.15kJ/mol80.9119 ±
0.0010
10035-10-6*842
99.7 Hydrogen bromideHBr (aq, 2570 H2O)Br-120.67± 0.15kJ/mol80.9119 ±
0.0010
10035-10-6*952
99.5 Hydrogen bromideHBr (aq, 5000 H2O)Br-120.74± 0.15kJ/mol80.9119 ±
0.0010
10035-10-6*844
93.7 Hydrogen bromideHBr (g)Br-27.94-35.79± 0.14kJ/mol80.9119 ±
0.0010
10035-10-6*0
93.6 Bromoniumyl[HBr]+ (g)[BrH+]1097.731089.89± 0.14kJ/mol80.9114 ±
0.0010
12258-64-9*0
90.5 Ammonium bromide(NH4)Br (cr)[NH4+].[Br-]-253.69-270.26± 0.16kJ/mol97.9425 ±
0.0010
12124-97-9*510

Most Influential reactions involving HBr (aq, 600 H2O)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.843989.1 HBr (aq, 600 H2O) → HBr (aq, 1000 H2O) ΔrH°(298.15 K) = -0.023 ± 0.002 kcal/molParker 1965, NBS TN270, NBS Tables 1989
0.7784940.1 BrCH2CH2OH (l) + 5/2 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) HBr (aq, 600 H2O) ΔrH°(298.15 K) = -1203.84 ± 0.5 kJ/molBernardes 2007
0.373984.1 HBr (aq, 600 H2O) → HBr (aq) ΔrH°(298.15 K) = -0.115 ± 0.004 kcal/molParker 1965, NBS TN270, NBS Tables 1989


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122o of the Thermochemical Network (2020); available at ATcT.anl.gov
4   Y.-C. Chang, B. Xiong, D. H. Bross, B. Ruscic, and C. Y. Ng,
A Vacuum Ultraviolet laser Pulsed Field Ionization-Photoion Study of Methane (CH4): Determination of the Appearance Energy of Methylium From Methane with Unprecedented Precision and the Resulting Impact on the Bond Dissociation Energies of CH4 and CH4+.
Phys. Chem. Chem. Phys. 19, 9592-9605 (2017) [DOI: 10.1039/c6cp08200a] (part of 2017 PCCP Hot Articles collection)
5   P. B. Changala, T. L. Nguyen, J. H. Baraban, G. B. Ellison, J. F. Stanton, D. H. Bross, and B. Ruscic,
Active Thermochemical Tables: The Adiabatic Ionization Energy of Hydrogen Peroxide.
J. Phys. Chem. A 121, 8799-8806 (2017) [DOI: 10.1021/acs.jpca.7b06221] (highlighted on the journal cover)
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.