Selected ATcT [1, 2] enthalpy of formation based on version 1.122o of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122h [4] to include the ionization energy of H2O2. [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
2,3-ButanedioneCH3C(O)C(O)CH3 (g)CC(=O)C(=O)C-310.62-327.19± 0.66kJ/mol86.0892 ±
0.0033
431-03-8*0

Top contributors to the provenance of ΔfH° of CH3C(O)C(O)CH3 (g)

The 20 contributors listed below account only for 76.5% of the provenance of ΔfH° of CH3C(O)C(O)CH3 (g).
A total of 114 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
20.75380.1 CH3C(O)C(O)CH3 (cr,l) → CH3C(O)C(O)CH3 (g) ΔrH°(298.15 K) = 9.25 ± 0.25 kcal/molNicholson 1954
19.15385.1 CH3C(O)C(O)CH3 (g) → CH3CO (g) [CH3CO]+ (g) ΔrH°(0 K) = 10.090 ± 0.006 eVFogleman 2004
4.63353.4 CH3CO (g) HBr (g) → CH3CHO (g) Br (g) ΔrG°(298.15 K) = 0.199 ± 0.250 kJ/molKovacs 2005, Atkinson 1999, 3rd Law
4.45379.1 CH3C(O)C(O)CH3 (cr,l) + 9/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -493.82 ± 0.19 kcal/molNicholson 1954, mw conversion
4.23796.2 CH3C(O)OH (g) → OH (g) [CH3CO]+ (g) ΔrH°(0 K) = 11.641 ± 0.008 eVShuman 2010
4.05379.2 CH3C(O)C(O)CH3 (cr,l) + 9/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -493.57 ± 0.20 kcal/molParks 1954, mw conversion
3.65380.2 CH3C(O)C(O)CH3 (cr,l) → CH3C(O)C(O)CH3 (g) ΔrH°(298.15 K) = 8.6 ± 0.5 (×1.189) kcal/molSpringall 1954, est unc
3.65285.1 CH3C(O)CH3 (g) → [CH3CO]+ (g) CH3 (g) ΔrH°(0 K) = 10.532 ± 0.006 eVBodi 2015
2.03288.1 CH3CHO (g) H2 (g) → CH3CH2OH (g) ΔrH°(355.15 K) = -16.752 ± 0.100 kcal/molDolliver 1938, note unc
1.43722.2 CH3CH(OH)CH3 (cr,l) + 9/2 O2 (g) → 3 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -479.39 ± 0.10 (×2.278) kcal/molSnelson 1961
1.23722.1 CH3CH(OH)CH3 (cr,l) + 9/2 O2 (g) → 3 CO2 (g) + 4 H2O (cr,l) ΔrH°(298.15 K) = -479.25 ± 0.24 kcal/molParks 1950a, mw conversion
1.15384.5 CH3C(O)C(O)CH3 (g) CH3CH3 (g) → 2 CH3C(O)CH3 (g) ΔrH°(0 K) = -5.18 ± 0.9 kcal/molRuscic W1RO
0.95384.4 CH3C(O)C(O)CH3 (g) CH3CH3 (g) → 2 CH3C(O)CH3 (g) ΔrH°(0 K) = -4.72 ± 1.0 kcal/molRuscic CBS-n
0.95384.2 CH3C(O)C(O)CH3 (g) CH3CH3 (g) → 2 CH3C(O)CH3 (g) ΔrH°(0 K) = -4.92 ± 1.0 kcal/molRuscic G4
0.7118.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
0.75384.1 CH3C(O)C(O)CH3 (g) CH3CH3 (g) → 2 CH3C(O)CH3 (g) ΔrH°(0 K) = -4.48 ± 1.1 kcal/molRuscic G3X
0.75383.5 CH3C(O)C(O)CH3 (g) + 2 CH3 (g) → 2 CH3CO (g) CH3CH3 (g) ΔrH°(0 K) = -15.45 ± 0.9 kcal/molRuscic W1RO
0.63796.1 CH3C(O)OH (g) → OH (g) [CH3CO]+ (g) ΔrH°(0 K) = 11.62 ± 0.02 eVTraeger 1982, AE corr, est unc
0.65383.4 CH3C(O)C(O)CH3 (g) + 2 CH3 (g) → 2 CH3CO (g) CH3CH3 (g) ΔrH°(0 K) = -15.78 ± 1.0 kcal/molRuscic CBS-n
0.65383.2 CH3C(O)C(O)CH3 (g) + 2 CH3 (g) → 2 CH3CO (g) CH3CH3 (g) ΔrH°(0 K) = -15.49 ± 1.0 kcal/molRuscic G4

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3C(O)C(O)CH3 (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
54.4 Acetylium[CH3CO]+ (g)C[C+]=O666.47659.18± 0.45kJ/mol43.0441 ±
0.0016
15762-07-9*0
48.6 AcetylCH3CO (g)C[C]=O-3.35-10.01± 0.34kJ/mol43.0446 ±
0.0016
3170-69-2*0
38.0 AcetoneCH3C(O)CH3 (g)CC(=O)C-200.08-216.77± 0.36kJ/mol58.0791 ±
0.0025
67-64-1*0
37.9 AcetoneCH3C(O)CH3 (cr,l)CC(=O)C-245.03-248.14± 0.36kJ/mol58.0791 ±
0.0025
67-64-1*500
37.0 2-PropanolCH3CH(OH)CH3 (g)CC(O)C-249.39-273.49± 0.36kJ/mol60.0950 ±
0.0025
67-63-0*0
36.5 2-PropanolCH3CH(OH)CH3 (cr,l)CC(O)C-306.12-318.93± 0.36kJ/mol60.0950 ±
0.0025
67-63-0*500
36.0 AcetaldehydeCH3CHO (g)CC=O-155.12-165.60± 0.26kJ/mol44.0526 ±
0.0017
75-07-0*0
35.6 Acetaldehyde cation[CH3CHO]+ (g)CC=[O+]831.87821.89± 0.26kJ/mol44.0520 ±
0.0017
36505-03-0*0
34.5 2,3-ButanedioneCH3C(O)C(O)CH3 (cr,l)CC(=O)C(=O)C-365.62± 0.53kJ/mol86.0892 ±
0.0033
431-03-8*500
29.7 AcetaldehydeCH3CHO (cr,l)CC=O-187.10-191.82± 0.31kJ/mol44.0526 ±
0.0017
75-07-0*500

Most Influential reactions involving CH3C(O)C(O)CH3 (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.7175385.1 CH3C(O)C(O)CH3 (g) → CH3CO (g) [CH3CO]+ (g) ΔrH°(0 K) = 10.090 ± 0.006 eVFogleman 2004
0.4325380.1 CH3C(O)C(O)CH3 (cr,l) → CH3C(O)C(O)CH3 (g) ΔrH°(298.15 K) = 9.25 ± 0.25 kcal/molNicholson 1954
0.0765380.2 CH3C(O)C(O)CH3 (cr,l) → CH3C(O)C(O)CH3 (g) ΔrH°(298.15 K) = 8.6 ± 0.5 (×1.189) kcal/molSpringall 1954, est unc
0.0415384.5 CH3C(O)C(O)CH3 (g) CH3CH3 (g) → 2 CH3C(O)CH3 (g) ΔrH°(0 K) = -5.18 ± 0.9 kcal/molRuscic W1RO
0.0335384.4 CH3C(O)C(O)CH3 (g) CH3CH3 (g) → 2 CH3C(O)CH3 (g) ΔrH°(0 K) = -4.72 ± 1.0 kcal/molRuscic CBS-n
0.0335384.2 CH3C(O)C(O)CH3 (g) CH3CH3 (g) → 2 CH3C(O)CH3 (g) ΔrH°(0 K) = -4.92 ± 1.0 kcal/molRuscic G4
0.0325383.5 CH3C(O)C(O)CH3 (g) + 2 CH3 (g) → 2 CH3CO (g) CH3CH3 (g) ΔrH°(0 K) = -15.45 ± 0.9 kcal/molRuscic W1RO
0.0275384.1 CH3C(O)C(O)CH3 (g) CH3CH3 (g) → 2 CH3C(O)CH3 (g) ΔrH°(0 K) = -4.48 ± 1.1 kcal/molRuscic G3X
0.0265383.4 CH3C(O)C(O)CH3 (g) + 2 CH3 (g) → 2 CH3CO (g) CH3CH3 (g) ΔrH°(0 K) = -15.78 ± 1.0 kcal/molRuscic CBS-n
0.0265383.2 CH3C(O)C(O)CH3 (g) + 2 CH3 (g) → 2 CH3CO (g) CH3CH3 (g) ΔrH°(0 K) = -15.49 ± 1.0 kcal/molRuscic G4
0.0195384.3 CH3C(O)C(O)CH3 (g) CH3CH3 (g) → 2 CH3C(O)CH3 (g) ΔrH°(0 K) = -4.54 ± 1.3 kcal/molRuscic CBS-n
0.0165385.6 CH3C(O)C(O)CH3 (g) → CH3CO (g) [CH3CO]+ (g) ΔrH°(0 K) = 10.116 ± 0.040 eVRuscic W1RO
0.0155383.3 CH3C(O)C(O)CH3 (g) + 2 CH3 (g) → 2 CH3CO (g) CH3CH3 (g) ΔrH°(0 K) = -14.97 ± 1.3 kcal/molRuscic CBS-n
0.0115382.5 CH3C(O)C(O)CH3 (g) → 2 CH3CO (g) ΔrH°(0 K) = 72.65 ± 1.50 kcal/molRuscic W1RO
0.0105382.4 CH3C(O)C(O)CH3 (g) → 2 CH3CO (g) ΔrH°(0 K) = 72.46 ± 1.60 kcal/molRuscic CBS-n
0.0105382.2 CH3C(O)C(O)CH3 (g) → 2 CH3CO (g) ΔrH°(0 K) = 71.24 ± 1.60 kcal/molRuscic G4
0.0085382.1 CH3C(O)C(O)CH3 (g) → 2 CH3CO (g) ΔrH°(0 K) = 73.16 ± 1.72 kcal/molRuscic G3X
0.0065383.1 CH3C(O)C(O)CH3 (g) + 2 CH3 (g) → 2 CH3CO (g) CH3CH3 (g) ΔrH°(0 K) = -13.37 ± 1.1 (×1.795) kcal/molRuscic G3X
0.0055382.3 CH3C(O)C(O)CH3 (g) → 2 CH3CO (g) ΔrH°(0 K) = 73.49 ± 2.16 kcal/molRuscic CBS-n
0.0045385.3 CH3C(O)C(O)CH3 (g) → CH3CO (g) [CH3CO]+ (g) ΔrH°(0 K) = 10.082 ± 0.073 eVRuscic G4


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122o of the Thermochemical Network (2020); available at ATcT.anl.gov
4   Y.-C. Chang, B. Xiong, D. H. Bross, B. Ruscic, and C. Y. Ng,
A Vacuum Ultraviolet laser Pulsed Field Ionization-Photoion Study of Methane (CH4): Determination of the Appearance Energy of Methylium From Methane with Unprecedented Precision and the Resulting Impact on the Bond Dissociation Energies of CH4 and CH4+.
Phys. Chem. Chem. Phys. 19, 9592-9605 (2017) [DOI: 10.1039/c6cp08200a] (part of 2017 PCCP Hot Articles collection)
5   P. B. Changala, T. L. Nguyen, J. H. Baraban, G. B. Ellison, J. F. Stanton, D. H. Bross, and B. Ruscic,
Active Thermochemical Tables: The Adiabatic Ionization Energy of Hydrogen Peroxide.
J. Phys. Chem. A 121, 8799-8806 (2017) [DOI: 10.1021/acs.jpca.7b06221] (highlighted on the journal cover)
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.