Selected ATcT [1, 2] enthalpy of formation based on version 1.122o of the Thermochemical Network [3] This version of ATcT results was generated from an expansion of version 1.122h [4] to include the ionization energy of H2O2. [5].
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Acetyl chloride | CH3C(O)Cl (l) | | | -272.16 | ± 0.33 | kJ/mol | 78.4973 ± 0.0019 | 75-36-5*500 |
|
Top contributors to the provenance of ΔfH° of CH3C(O)Cl (l)The 18 contributors listed below account for 90.9% of the provenance of ΔfH° of CH3C(O)Cl (l).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 37.8 | 3833.1 | CH3C(O)Cl (l) + H2O (cr,l) → CH3C(O)OH (aq, 75 H2O) + HCl (aq, 75 H2O)  | ΔrH°(298.15 K) = -22.07 ± 0.07 kcal/mol | Carson 1949 | 10.7 | 3801.2 | CH3C(O)OH (l) + 2 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -209.125 ± 0.054 kcal/mol | Lebedeva 1964 | 8.9 | 3834.1 | CH3C(O)Cl (l) + H2O (cr,l) → CH3C(O)OH (aq, 1500 H2O) + HCl (aq, 1500 H2O)  | ΔrH°(298.15 K) = -22.22 ± 0.10 (×1.445) kcal/mol | Pritchard 1950, Parker 1965, NBS Tables 1989 | 8.5 | 3811.3 | CH3C(O)OH (l) → CH3C(O)OH (aq, 700 H2O)  | ΔrH°(298.15 K) = -0.293 ± 0.05 kcal/mol | Parker 1965, est unc | 4.7 | 3801.3 | CH3C(O)OH (l) + 2 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -875.14 ± 0.34 kJ/mol | Steele 1997 | 3.4 | 3801.1 | CH3C(O)OH (l) + 2 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -874.54 ± 0.30 (×1.325) kJ/mol | Evans 1959 | 2.2 | 3829.7 | 2 CH3C(O)Cl (g) + CH2O (g) → 2 CH3CHO (g) + CCl2O (g)  | ΔrH°(0 K) = 10.13 ± 0.9 kcal/mol | Ruscic W1RO | 2.1 | 3802.2 | CH3C(O)OH (l) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = -0.360 ± 0.100 kcal/mol | Parker 1965, NBS Tables 1989, est unc | 1.8 | 3829.4 | 2 CH3C(O)Cl (g) + CH2O (g) → 2 CH3CHO (g) + CCl2O (g)  | ΔrH°(0 K) = 9.60 ± 1.0 kcal/mol | Ruscic G4 | 1.6 | 3834.2 | CH3C(O)Cl (l) + H2O (cr,l) → CH3C(O)OH (aq, 1500 H2O) + HCl (aq, 1500 H2O)  | ΔrH°(298.15 K) = -22.55 ± 0.34 kcal/mol | Devore 1969 | 1.5 | 3829.3 | 2 CH3C(O)Cl (g) + CH2O (g) → 2 CH3CHO (g) + CCl2O (g)  | ΔrH°(0 K) = 9.85 ± 1.1 kcal/mol | Ruscic G3X | 1.3 | 3828.8 | CH3C(O)Cl (g) → CH3CO (g) + Cl (g)  | ΔrH°(0 K) = 83.42 ± 0.6 kcal/mol | Tang 2008, est unc | 1.0 | 3829.6 | 2 CH3C(O)Cl (g) + CH2O (g) → 2 CH3CHO (g) + CCl2O (g)  | ΔrH°(0 K) = 10.01 ± 1.3 kcal/mol | Ruscic CBS-n | 0.9 | 3802.3 | CH3C(O)OH (l) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = -0.361 ± 0.150 kcal/mol | Pritchard 1950, Parker 1965, est unc | 0.9 | 3802.4 | CH3C(O)OH (l) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = -0.347 ± 0.150 kcal/mol | Klibanova 1933, Parker 1965, est unc | 0.9 | 3802.5 | CH3C(O)OH (l) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = -0.326 ± 0.150 kcal/mol | Pickering 1895, Parker 1965, est unc | 0.9 | 3802.6 | CH3C(O)OH (l) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = -0.364 ± 0.150 kcal/mol | Thomsen 1882, Parker 1965, est unc | 0.9 | 3802.8 | CH3C(O)OH (l) → CH3C(O)OH (aq)  | ΔrH°(298.15 K) = -0.350 ± 0.150 kcal/mol | Berthelot 1875b, Parker 1965, est unc |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3C(O)Cl (l) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 98.6 | Acetyl chloride | CH3C(O)Cl (g) | | -232.60 | -241.59 | ± 0.33 | kJ/mol | 78.4973 ± 0.0019 | 75-36-5*0 | 62.9 | Acetic acid | CH3C(O)OH (aq, 75 H2O) | | | -484.71 | ± 0.23 | kJ/mol | 60.0520 ± 0.0017 | 64-19-7*825 | 62.9 | Acetic acid | CH3C(O)OH (aq, 700 H2O) | | | -484.90 | ± 0.23 | kJ/mol | 60.0520 ± 0.0017 | 64-19-7*835 | 62.9 | Acetic acid | CH3C(O)OH (aq) | | | -485.18 | ± 0.23 | kJ/mol | 60.0520 ± 0.0017 | 64-19-7*800 | 62.8 | Acetic acid | CH3C(O)OH (aq, 1500 H2O) | | | -484.92 | ± 0.23 | kJ/mol | 60.0520 ± 0.0017 | 64-19-7*840 | 62.8 | Acetic acid | CH3C(O)OH (aq, 1000 H2O) | | | -484.91 | ± 0.23 | kJ/mol | 60.0520 ± 0.0017 | 64-19-7*839 | 62.8 | Acetic acid | CH3C(O)OH (aq, 500 H2O) | | | -484.89 | ± 0.23 | kJ/mol | 60.0520 ± 0.0017 | 64-19-7*833 | 62.8 | Acetic acid | CH3C(O)OH (aq, 10000 H2O) | | | -484.94 | ± 0.23 | kJ/mol | 60.0520 ± 0.0017 | 64-19-7*850 | 46.3 | Acetic acid | CH3C(O)OH (l) | | -484.10 | -483.68 | ± 0.18 | kJ/mol | 60.0520 ± 0.0017 | 64-19-7*500 | 12.8 | Acetaldehyde | CH3CHO (g) | | -155.12 | -165.60 | ± 0.26 | kJ/mol | 44.0526 ± 0.0017 | 75-07-0*0 |
|
Most Influential reactions involving CH3C(O)Cl (l)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.925 | 3832.7 | CH3C(O)Cl (l) → CH3C(O)Cl (g)  | ΔrG°(298.15 K) = 2.416 ± 0.055 kJ/mol | McDonald 1959, 3rd Law | 0.722 | 3833.1 | CH3C(O)Cl (l) + H2O (cr,l) → CH3C(O)OH (aq, 75 H2O) + HCl (aq, 75 H2O)  | ΔrH°(298.15 K) = -22.07 ± 0.07 kcal/mol | Carson 1949 | 0.170 | 3834.1 | CH3C(O)Cl (l) + H2O (cr,l) → CH3C(O)OH (aq, 1500 H2O) + HCl (aq, 1500 H2O)  | ΔrH°(298.15 K) = -22.22 ± 0.10 (×1.445) kcal/mol | Pritchard 1950, Parker 1965, NBS Tables 1989 | 0.030 | 3834.2 | CH3C(O)Cl (l) + H2O (cr,l) → CH3C(O)OH (aq, 1500 H2O) + HCl (aq, 1500 H2O)  | ΔrH°(298.15 K) = -22.55 ± 0.34 kcal/mol | Devore 1969 | 0.017 | 3832.3 | CH3C(O)Cl (l) → CH3C(O)Cl (g)  | ΔrG°(298.15 K) = 2.19 ± 0.40 kJ/mol | NBS Tables 1989 | 0.017 | 3832.2 | CH3C(O)Cl (l) → CH3C(O)Cl (g)  | ΔrH°(298.15 K) = 30.29 ± 0.40 kJ/mol | NBS Tables 1989 | 0.013 | 3832.8 | CH3C(O)Cl (l) → CH3C(O)Cl (g)  | ΔrH°(298.15 K) = 31.02 ± 0.32 (×1.445) kJ/mol | McDonald 1959, 2nd Law | 0.009 | 3832.1 | CH3C(O)Cl (l) → CH3C(O)Cl (g)  | ΔrH°(298.15 K) = 30.03 ± 0.24 (×2.229) kJ/mol | ThermoData 2004 | 0.007 | 3832.5 | CH3C(O)Cl (l) → CH3C(O)Cl (g)  | ΔrG°(298.15 K) = 0.43 ± 0.02 (×7.179) kcal/mol | Devore 1969, 3rd Law | 0.005 | 3832.4 | CH3C(O)Cl (l) → CH3C(O)Cl (g)  | ΔrH°(298.15 K) = 7.13 ± 0.05 (×3.513) kcal/mol | Mathews 1931, est unc | 0.000 | 3832.6 | CH3C(O)Cl (l) → CH3C(O)Cl (g)  | ΔrH°(298.15 K) = 5.72 ± 0.07 (×23.12) kcal/mol | Devore 1969, 2nd Law |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122o of the Thermochemical Network (2020); available at ATcT.anl.gov |
4
|
|
Y.-C. Chang, B. Xiong, D. H. Bross, B. Ruscic, and C. Y. Ng,
A Vacuum Ultraviolet laser Pulsed Field Ionization-Photoion Study of Methane (CH4): Determination of the Appearance Energy of Methylium From Methane with Unprecedented Precision and the Resulting Impact on the Bond Dissociation Energies of CH4 and CH4+.
Phys. Chem. Chem. Phys. 19, 9592-9605 (2017)
[DOI: 10.1039/c6cp08200a] (part of 2017 PCCP Hot Articles collection)
|
5
|
|
P. B. Changala, T. L. Nguyen, J. H. Baraban, G. B. Ellison, J. F. Stanton, D. H. Bross, and B. Ruscic,
Active Thermochemical Tables: The Adiabatic Ionization Energy of Hydrogen Peroxide.
J. Phys. Chem. A 121, 8799-8806 (2017)
[DOI: 10.1021/acs.jpca.7b06221] (highlighted on the journal cover)
|
6
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|