Selected ATcT [1, 2] enthalpy of formation based on version 1.122o of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122h [4] to include the ionization energy of H2O2. [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
PropynylideneHCCCH (g, cis singlet)[CH]=C=[CH]597.6599.4± 1.3kJ/mol38.0480 ±
0.0024
67152-18-5*3

Representative Geometry of HCCCH (g, cis singlet)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of HCCCH (g, cis singlet)

The 20 contributors listed below account only for 75.1% of the provenance of ΔfH° of HCCCH (g, cis singlet).
A total of 75 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
5.82905.7 HCCCH (g, triplet) → HCCCH (g, cis singlet) ΔrH°(0 K) = 53.81 ± 4 kJ/molAguilera-Iparraguirre 2008, est unc
5.32913.1 [HCCCH]- (g, transoid 2B) HCCCH (g, triplet) → [HCCCH]- (g, cisoid 2A) HCCCH (g, trans singlet) ΔrH°(0 K) = 0.583 ± 0.010 eVOsborn 2014
5.12929.5 HCCCH (g, cis singlet) → CH2CC (g) ΔrH°(0 K) = -10.53 ± 1.2 kcal/molRuscic W1RO
4.32929.2 HCCCH (g, cis singlet) → CH2CC (g) ΔrH°(0 K) = -10.43 ± 1.3 kcal/molRuscic G4
4.22912.4 [HCCCH]- (g, transoid 2B) HCCCH (g, cis singlet) → HCCCH (g, trans singlet) [HCCCH]- (g, cisoid 2A) ΔrH°(0 K) = 227 ± 300 cm-1Ruscic W1RO
4.02893.5 [HCCCH]- (g, cisoid 2A) → HCCCH (g, cis singlet) ΔrH°(0 K) = 1.681 ± 0.050 eVRuscic W1RO
4.02912.2 [HCCCH]- (g, transoid 2B) HCCCH (g, cis singlet) → HCCCH (g, trans singlet) [HCCCH]- (g, cisoid 2A) ΔrH°(0 K) = 220 ± 310 cm-1Ruscic G4
3.82912.1 [HCCCH]- (g, transoid 2B) HCCCH (g, cis singlet) → HCCCH (g, trans singlet) [HCCCH]- (g, cisoid 2A) ΔrH°(0 K) = 221 ± 315 cm-1Ruscic G3X
3.82907.4 HCCCH (g, cis singlet) → HCCCH (g, trans singlet) ΔrH°(0 K) = 1 ± 300 cm-1Ruscic W1RO
3.72929.1 HCCCH (g, cis singlet) → CH2CC (g) ΔrH°(0 K) = -10.49 ± 1.4 kcal/molRuscic G3X
3.72905.5 HCCCH (g, triplet) → HCCCH (g, cis singlet) ΔrH°(0 K) = 4924 ± 420 cm-1Ruscic W1RO
3.62907.2 HCCCH (g, cis singlet) → HCCCH (g, trans singlet) ΔrH°(0 K) = 35 ± 310 cm-1Ruscic G4
3.52907.1 HCCCH (g, cis singlet) → HCCCH (g, trans singlet) ΔrH°(0 K) = 6 ± 315 cm-1Ruscic G3X
3.22905.2 HCCCH (g, triplet) → HCCCH (g, cis singlet) ΔrH°(0 K) = 4156 ± 450 cm-1Ruscic G4
3.12912.3 [HCCCH]- (g, transoid 2B) HCCCH (g, cis singlet) → HCCCH (g, trans singlet) [HCCCH]- (g, cisoid 2A) ΔrH°(0 K) = 220 ± 350 cm-1Ruscic CBS-n
2.82929.3 HCCCH (g, cis singlet) → CH2CC (g) ΔrH°(0 K) = -10.95 ± 1.6 kcal/molRuscic CBS-n
2.82907.3 HCCCH (g, cis singlet) → HCCCH (g, trans singlet) ΔrH°(0 K) = 5 ± 350 cm-1Ruscic CBS-n
2.72893.2 [HCCCH]- (g, cisoid 2A) → HCCCH (g, cis singlet) ΔrH°(0 K) = 1.678 ± 0.061 eVRuscic G4
2.72905.1 HCCCH (g, triplet) → HCCCH (g, cis singlet) ΔrH°(0 K) = 4287 ± 490 cm-1Ruscic G3X
2.02905.3 HCCCH (g, triplet) → HCCCH (g, cis singlet) ΔrH°(0 K) = 4967 ± 560 cm-1Ruscic CBS-n

Top 10 species with enthalpies of formation correlated to the ΔfH° of HCCCH (g, cis singlet)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
100.0 PropynylideneHCCCH (g, singlet)[CH]=C=[CH]597.6599.4± 1.3kJ/mol38.0480 ±
0.0024
67152-18-5*2
46.3 PropynylideneHCCCH (g, trans singlet)[CH]=C=[CH]597.4599.2± 1.1kJ/mol38.0480 ±
0.0024
67152-18-5*4
39.1 PropynylideneHCCCH (g, triplet)[CH]=C=[CH]543.41546.40± 0.64kJ/mol38.0480 ±
0.0024
67152-18-5*1
39.1 PropynylideneHCCCH (g)[CH]=C=[CH]543.41546.40± 0.64kJ/mol38.0480 ±
0.0024
67152-18-5*0
25.8 Propargylenide[HCCCH]- (g)C#C[CH-]434.4437.6± 1.1kJ/mol38.0485 ±
0.0024
82906-05-6*0
25.8 Propargylenide[HCCCH]- (g, transoid 2B)C#C[CH-]434.4436.9± 1.1kJ/mol38.0485 ±
0.0024
82906-05-6*1
22.7 Propargylenide[HCCCH]- (g, cisoid 2A)C#C[CH-]436.9439.4± 1.1kJ/mol38.0485 ±
0.0024
82906-05-6*2
19.2 PropadienylideneCH2CC (g)C=C=[C]554.41555.55± 0.41kJ/mol38.0480 ±
0.0024
60731-10-4*0
18.9 Propadienylidenide[CH2CC]- (g)C=C=[C-]381.14382.04± 0.42kJ/mol38.0485 ±
0.0024
109292-49-1*0
15.3 CyclopropenylideneC(CHCH) (g)C1=C=C1497.05496.09± 0.46kJ/mol38.0480 ±
0.0024
16165-40-5*0

Most Influential reactions involving HCCCH (g, cis singlet)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.0002904.1 HCCCH (g, singlet) → HCCCH (g, cis singlet) ΔrH°(0 K) = 0.00 ± 0.00 cm-1Ruscic W1RO, Ruscic G4
0.1122907.4 HCCCH (g, cis singlet) → HCCCH (g, trans singlet) ΔrH°(0 K) = 1 ± 300 cm-1Ruscic W1RO
0.1052907.2 HCCCH (g, cis singlet) → HCCCH (g, trans singlet) ΔrH°(0 K) = 35 ± 310 cm-1Ruscic G4
0.1012907.1 HCCCH (g, cis singlet) → HCCCH (g, trans singlet) ΔrH°(0 K) = 6 ± 315 cm-1Ruscic G3X
0.0952912.4 [HCCCH]- (g, transoid 2B) HCCCH (g, cis singlet) → HCCCH (g, trans singlet) [HCCCH]- (g, cisoid 2A) ΔrH°(0 K) = 227 ± 300 cm-1Ruscic W1RO
0.0892912.2 [HCCCH]- (g, transoid 2B) HCCCH (g, cis singlet) → HCCCH (g, trans singlet) [HCCCH]- (g, cisoid 2A) ΔrH°(0 K) = 220 ± 310 cm-1Ruscic G4
0.0862912.1 [HCCCH]- (g, transoid 2B) HCCCH (g, cis singlet) → HCCCH (g, trans singlet) [HCCCH]- (g, cisoid 2A) ΔrH°(0 K) = 221 ± 315 cm-1Ruscic G3X
0.0862893.5 [HCCCH]- (g, cisoid 2A) → HCCCH (g, cis singlet) ΔrH°(0 K) = 1.681 ± 0.050 eVRuscic W1RO
0.0822907.3 HCCCH (g, cis singlet) → HCCCH (g, trans singlet) ΔrH°(0 K) = 5 ± 350 cm-1Ruscic CBS-n
0.0792905.7 HCCCH (g, triplet) → HCCCH (g, cis singlet) ΔrH°(0 K) = 53.81 ± 4 kJ/molAguilera-Iparraguirre 2008, est unc
0.0702912.3 [HCCCH]- (g, transoid 2B) HCCCH (g, cis singlet) → HCCCH (g, trans singlet) [HCCCH]- (g, cisoid 2A) ΔrH°(0 K) = 220 ± 350 cm-1Ruscic CBS-n
0.0582893.2 [HCCCH]- (g, cisoid 2A) → HCCCH (g, cis singlet) ΔrH°(0 K) = 1.678 ± 0.061 eVRuscic G4
0.0572929.5 HCCCH (g, cis singlet) → CH2CC (g) ΔrH°(0 K) = -10.53 ± 1.2 kcal/molRuscic W1RO
0.0502905.5 HCCCH (g, triplet) → HCCCH (g, cis singlet) ΔrH°(0 K) = 4924 ± 420 cm-1Ruscic W1RO
0.0492929.2 HCCCH (g, cis singlet) → CH2CC (g) ΔrH°(0 K) = -10.43 ± 1.3 kcal/molRuscic G4
0.0442905.2 HCCCH (g, triplet) → HCCCH (g, cis singlet) ΔrH°(0 K) = 4156 ± 450 cm-1Ruscic G4
0.0422929.1 HCCCH (g, cis singlet) → CH2CC (g) ΔrH°(0 K) = -10.49 ± 1.4 kcal/molRuscic G3X
0.0372905.1 HCCCH (g, triplet) → HCCCH (g, cis singlet) ΔrH°(0 K) = 4287 ± 490 cm-1Ruscic G3X
0.0322929.3 HCCCH (g, cis singlet) → CH2CC (g) ΔrH°(0 K) = -10.95 ± 1.6 kcal/molRuscic CBS-n
0.0292893.1 [HCCCH]- (g, cisoid 2A) → HCCCH (g, cis singlet) ΔrH°(0 K) = 1.638 ± 0.085 eVRuscic G3X


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122o of the Thermochemical Network (2020); available at ATcT.anl.gov
4   Y.-C. Chang, B. Xiong, D. H. Bross, B. Ruscic, and C. Y. Ng,
A Vacuum Ultraviolet laser Pulsed Field Ionization-Photoion Study of Methane (CH4): Determination of the Appearance Energy of Methylium From Methane with Unprecedented Precision and the Resulting Impact on the Bond Dissociation Energies of CH4 and CH4+.
Phys. Chem. Chem. Phys. 19, 9592-9605 (2017) [DOI: 10.1039/c6cp08200a] (part of 2017 PCCP Hot Articles collection)
5   P. B. Changala, T. L. Nguyen, J. H. Baraban, G. B. Ellison, J. F. Stanton, D. H. Bross, and B. Ruscic,
Active Thermochemical Tables: The Adiabatic Ionization Energy of Hydrogen Peroxide.
J. Phys. Chem. A 121, 8799-8806 (2017) [DOI: 10.1021/acs.jpca.7b06221] (highlighted on the journal cover)
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.