Selected ATcT [1, 2] enthalpy of formation based on version 1.122o of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122h [4] to include the ionization energy of H2O2. [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Formic acid cation[HC(O)OH]+ (g, syn)[CH+](=O)O721.88714.79± 0.26kJ/mol46.0248 ±
0.0010
50614-05-6*1

Representative Geometry of [HC(O)OH]+ (g, syn)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [HC(O)OH]+ (g, syn)

The 20 contributors listed below account only for 75.1% of the provenance of ΔfH° of [HC(O)OH]+ (g, syn).
A total of 139 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
13.13569.2 HC(O)OH (cr,l) + 1/2 O2 (g) → CO2 (g) H2O (cr,l) ΔrH°(298.15 K) = -60.807 ± 0.074 kcal/molLebedeva 1964
13.03547.2 HC(O)OH (g, syn) → [HC(O)OH]+ (g, syn) ΔrH°(0 K) = 11.329 ± 0.002 eVBell 1975
9.03569.1 HC(O)OH (cr,l) + 1/2 O2 (g) → CO2 (g) H2O (cr,l) ΔrH°(298.15 K) = -60.851 ± 0.089 kcal/molSinke 1959
8.73570.1 HC(O)OH (cr,l) → HC(O)OH (g) ΔrH°(298.15 K) = 46.30 ± 0.23 kJ/molMajer 1985
8.53547.1 HC(O)OH (g, syn) → [HC(O)OH]+ (g, syn) ΔrH°(0 K) = 91370 ± 20 cm-1Price 1937, est unc
4.63547.8 HC(O)OH (g, syn) → [HC(O)OH]+ (g, syn) ΔrH°(0 K) = 11.3246 ± 0.0020 (×1.682) eVLeach 2003, Schwell 2001
3.12555.2 HC(O)OH (g, syn) → [HCO]+ (g) OH (g) ΔrH°(0 K) = 12.81 ± 0.01 eVTraeger 1985, AE corr
2.93568.2 HC(O)OH (g) → [HCO]+ (g) OH (g) ΔrH°(0 K) = 1235.7 ± 1.0 kJ/molShuman 2010a, Bomble 2006
2.83570.2 HC(O)OH (cr,l) → HC(O)OH (g) ΔrH°(298.15 K) = 46.15 ± 0.40 kJ/molNBS Tables 1989
2.03545.3 HC(O)OH (g, syn) → C (g) + 2 H (g) + 2 O (g) ΔrH°(0 K) = 479.81 ± 0.30 kcal/molKarton 2011
1.83570.3 HC(O)OH (cr,l) → HC(O)OH (g) ΔrH°(298.15 K) = 46.3 ± 0.5 kJ/molKonicek 1970
1.13544.10 HC(O)OH (g, syn) → C (g) + 2 H (g) + 2 O (g) ΔrH°(0 K) = 480.1 ± 0.4 kcal/molFeller 2003c
0.73633.14 HC(O)OH (g, syn) → [HOCO]+ (g) H (g) ΔrH°(0 K) = 1187.3 ± 1.0 kJ/molShuman 2010a
0.73578.11 CH2(OO) (g) → HC(O)OH (g, syn) ΔrH°(0 K) = -90.89 ± 0.25 kcal/molKarton 2011
0.53545.2 HC(O)OH (g, syn) → C (g) + 2 H (g) + 2 O (g) ΔrH°(0 K) = 479.82 ± 0.56 kcal/molKarton 2011
0.53571.11 CH2(OO) (g) → C (g) + 2 H (g) + 2 O (g) ΔrH°(0 K) = 388.92 ± 0.30 kcal/molKarton 2011
0.53633.2 HC(O)OH (g, syn) → [HOCO]+ (g) H (g) ΔrH°(0 K) = 12.316 ± 0.013 eVRuscic 1989
0.32555.1 HC(O)OH (g, syn) → [HCO]+ (g) OH (g) ΔrH°(0 K) = 12.84 ± 0.03 eVMatthews 1969, AE corr
0.3118.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
0.23571.14 CH2(OO) (g) → C (g) + 2 H (g) + 2 O (g) ΔrH°(0 K) = 389.09 ± 0.4 kcal/molFeller 2012

Top 10 species with enthalpies of formation correlated to the ΔfH° of [HC(O)OH]+ (g, syn)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
100.0 Formic acid cation[HC(O)OH]+ (g)[CH+](=O)O721.88715.34± 0.26kJ/mol46.0248 ±
0.0010
50614-05-6*0
84.9 Formic acidHC(O)OH (g, syn)C(=O)O-371.10-378.42± 0.22kJ/mol46.0254 ±
0.0010
64-18-6*1
84.9 Formic acidHC(O)OH (g)C(=O)O-371.10-378.40± 0.22kJ/mol46.0254 ±
0.0010
64-18-6*0
57.6 Formic acidHC(O)OH (cr,l)C(=O)O-431.55-424.72± 0.20kJ/mol46.0254 ±
0.0010
64-18-6*500
46.2 Formic acidHC(O)OH (g, anti)C(=O)O-354.75-361.86± 0.38kJ/mol46.0254 ±
0.0010
64-18-6*2
22.8 Carbonic acidC(O)(OH)2 (g)OC(=O)O-602.75-612.06± 0.75kJ/mol62.0248 ±
0.0012
463-79-6*0
22.8 Carbonic acidC(O)(OH)2 (g, cis-cis)OC(=O)O-602.75-612.92± 0.75kJ/mol62.0248 ±
0.0012
463-79-6*1
21.5 Hydroxyoxomethylium[HOCO]+ (g)O[C+]=O600.66597.58± 0.44kJ/mol45.0169 ±
0.0010
638-71-1*0
21.4 Carbonic acidC(O)(OH)2 (g, cis-trans)OC(=O)O-596.89-607.00± 0.83kJ/mol62.0248 ±
0.0012
463-79-6*2
21.0 Methanium[CH5]+ (g)[CH5+]921.95911.71± 0.45kJ/mol17.04985 ±
0.00087
15135-49-6*0

Most Influential reactions involving [HC(O)OH]+ (g, syn)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.0003560.1 [HC(O)OH]+ (g) → [HC(O)OH]+ (g, syn) ΔrH°(0 K) = 0 ± 0 cm-1triv, Ruscic G3B3
0.4783547.2 HC(O)OH (g, syn) → [HC(O)OH]+ (g, syn) ΔrH°(0 K) = 11.329 ± 0.002 eVBell 1975
0.3113547.1 HC(O)OH (g, syn) → [HC(O)OH]+ (g, syn) ΔrH°(0 K) = 91370 ± 20 cm-1Price 1937, est unc
0.1693547.8 HC(O)OH (g, syn) → [HC(O)OH]+ (g, syn) ΔrH°(0 K) = 11.3246 ± 0.0020 (×1.682) eVLeach 2003, Schwell 2001
0.1233564.7 [HC(O)OH]+ (g, syn) → [HC(O)OH]+ (g, anti) ΔrH°(0 K) = 173 ± 280 cm-1Ruscic CBS-n
0.1073564.8 [HC(O)OH]+ (g, syn) → [HC(O)OH]+ (g, anti) ΔrH°(0 K) = 149 ± 300 cm-1Ruscic W1RO
0.1003564.4 [HC(O)OH]+ (g, syn) → [HC(O)OH]+ (g, anti) ΔrH°(0 K) = 138 ± 310 cm-1Ruscic G4
0.0973564.3 [HC(O)OH]+ (g, syn) → [HC(O)OH]+ (g, anti) ΔrH°(0 K) = 137 ± 315 cm-1Ruscic G3X
0.0783564.6 [HC(O)OH]+ (g, syn) → [HC(O)OH]+ (g, anti) ΔrH°(0 K) = 167 ± 350 cm-1Ruscic CBS-n
0.0143550.1 HC(O)OH (g, anti) → [HC(O)OH]+ (g, syn) ΔrH°(0 K) = 11.16 ± 0.03 eVWarneck 1974
0.0143550.2 HC(O)OH (g, anti) → [HC(O)OH]+ (g, syn) ΔrH°(0 K) = 11.16 ± 0.03 eVMatthews 1969
0.0093547.4 HC(O)OH (g, syn) → [HC(O)OH]+ (g, syn) ΔrH°(0 K) = 11.314 ± 0.002 (×7.025) eVKnowles 1974
0.0083550.10 HC(O)OH (g, anti) → [HC(O)OH]+ (g, syn) ΔrH°(0 K) = 11.170 ± 0.040 eVRuscic W1RO
0.0043547.3 HC(O)OH (g, syn) → [HC(O)OH]+ (g, syn) ΔrH°(0 K) = 11.31 ± 0.02 eVTraeger 1985, est unc
0.0043547.7 HC(O)OH (g, syn) → [HC(O)OH]+ (g, syn) ΔrH°(0 K) = 11.33 ± 0.02 eVBrundle 1969a, est unc
0.0043547.5 HC(O)OH (g, syn) → [HC(O)OH]+ (g, syn) ΔrH°(0 K) = 11.33 ± 0.02 eVWatanabe 1973a, Watanabe 1973, est unc
0.0023550.6 HC(O)OH (g, anti) → [HC(O)OH]+ (g, syn) ΔrH°(0 K) = 11.126 ± 0.073 eVRuscic G4
0.0023550.9 HC(O)OH (g, anti) → [HC(O)OH]+ (g, syn) ΔrH°(0 K) = 11.168 ± 0.075 eVRuscic CBS-n
0.0023547.6 HC(O)OH (g, syn) → [HC(O)OH]+ (g, syn) ΔrH°(0 K) = 11.35 ± 0.03 eVThomas 1972
0.0013555.1 [HC(O)OH]+ (g, syn) → C (g) H (g) H+ (g) + 2 O (g) ΔrH°(0 K) = 531.93 ± 1.5 kcal/molNguyen 2007, est unc


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122o of the Thermochemical Network (2020); available at ATcT.anl.gov
4   Y.-C. Chang, B. Xiong, D. H. Bross, B. Ruscic, and C. Y. Ng,
A Vacuum Ultraviolet laser Pulsed Field Ionization-Photoion Study of Methane (CH4): Determination of the Appearance Energy of Methylium From Methane with Unprecedented Precision and the Resulting Impact on the Bond Dissociation Energies of CH4 and CH4+.
Phys. Chem. Chem. Phys. 19, 9592-9605 (2017) [DOI: 10.1039/c6cp08200a] (part of 2017 PCCP Hot Articles collection)
5   P. B. Changala, T. L. Nguyen, J. H. Baraban, G. B. Ellison, J. F. Stanton, D. H. Bross, and B. Ruscic,
Active Thermochemical Tables: The Adiabatic Ionization Energy of Hydrogen Peroxide.
J. Phys. Chem. A 121, 8799-8806 (2017) [DOI: 10.1021/acs.jpca.7b06221] (highlighted on the journal cover)
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.