Selected ATcT [1, 2] enthalpy of formation based on version 1.122o of the Thermochemical Network [3] This version of ATcT results was generated from an expansion of version 1.122h [4] to include the ionization energy of H2O2. [5].
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Bromochlorane | BrCl (g) | | 21.879 | 14.435 | ± 0.060 | kJ/mol | 115.3567 ± 0.0013 | 13863-41-7*0 |
|
Representative Geometry of BrCl (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of BrCl (g)The 2 contributors listed below account for 91.9% of the provenance of ΔfH° of BrCl (g).
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of BrCl (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 93.6 | Dibromine | Br2 (g) | | 45.68 | 30.88 | ± 0.11 | kJ/mol | 159.8080 ± 0.0020 | 7726-95-6*0 | 93.6 | Bromine atom | Br (g) | | 117.914 | 111.852 | ± 0.056 | kJ/mol | 79.90400 ± 0.00100 | 10097-32-2*0 | 93.6 | Bromine atom | Br (g, 2P3/2) | | 117.914 | 111.852 | ± 0.056 | kJ/mol | 79.90400 ± 0.00100 | 10097-32-2*1 | 93.6 | Bromine atom | Br (g, 2P1/2) | | 161.998 | 155.936 | ± 0.056 | kJ/mol | 79.90400 ± 0.00100 | 10097-32-2*2 | 93.6 | Bromide | Br- (g) | | -206.623 | -212.685 | ± 0.056 | kJ/mol | 79.90455 ± 0.00100 | 24959-67-9*0 | 93.1 | Bromanylium | Br+ (g) | | 1257.774 | 1251.712 | ± 0.056 | kJ/mol | 79.90345 ± 0.00100 | 22541-56-6*0 | 78.1 | Iodine monobromide | IBr (g) | | 49.715 | 40.768 | ± 0.067 | kJ/mol | 206.8085 ± 0.0010 | 7789-33-5*0 | 45.9 | Diatomic bromine cation | [Br2]+ (g) | | 1060.32 | 1045.37 | ± 0.23 | kJ/mol | 159.8075 ± 0.0020 | 12595-71-0*0 | 27.8 | Dibromophosgene | CBr2O (g) | | -97.98 | -113.92 | ± 0.37 | kJ/mol | 187.8181 ± 0.0022 | 593-95-3*0 | 27.6 | Hydrogen bromide | HBr (g) | | -27.94 | -35.79 | ± 0.14 | kJ/mol | 80.9119 ± 0.0010 | 10035-10-6*0 |
|
Most Influential reactions involving BrCl (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.706 | 1017.6 | 2 BrCl (g) → Br2 (g) + Cl2 (g)  | ΔrG°(295.15 K) = 5.419 ± 0.049 kJ/mol | Tellinghuisen 2003, 3rd Law | 0.234 | 4466.1 | CF3Br (g) + Cl2 (g) → CF3Cl (g) + BrCl (g)  | ΔrH°(298.15 K) = -10.69 ± 0.30 kcal/mol | Coomber 1967b, as quoted by Cox 1970 | 0.220 | 4488.1 | Br2 (g) + CCl4 (g) → BrCl (g) + CCl3Br (g)  | ΔrH°(298.15 K) = 8.84 ± 0.30 kcal/mol | Mendenhall 1973, as quoted by Pedley 1986 | 0.196 | 1062.1 | HOBr (g) + Cl (g) → BrCl (g) + OH (g)  | ΔrG°(298.15 K) = -10.14 ± 1.04 kJ/mol | Loewenstein 1984, Kukui 1996, Monks 1993a, Loewenstein 1984 | 0.118 | 1014.5 | BrCl (g) → Br (g) + Cl (g)  | ΔrH°(0 K) = 18027 ± 5 cm-1 | Tellinghuisen 2003a | 0.117 | 1015.9 | 2 BrCl (g) → Br2 (g) + Cl2 (g)  | ΔrG°(301.15 K) = 5.54 ± 0.12 kJ/mol | Vesper 1934, 3rd Law, est unc | 0.116 | 4467.1 | CF3Cl (g) + Br2 (g) → CF3Br (g) + BrCl (g)  | ΔrH°(298.15 K) = 10.49 ± 0.40 (×1.067) kcal/mol | Coomber 1967b, as quoted by Cox 1970 | 0.013 | 1014.2 | BrCl (g) → Br (g) + Cl (g)  | ΔrH°(0 K) = 18023 ± 15 cm-1 | Brown 1988 | 0.008 | 1017.2 | 2 BrCl (g) → Br2 (g) + Cl2 (g)  | ΔrG°(298.15 K) = 5.81 ± 0.45 kJ/mol | Bartlett 1999, 3rd Law | 0.008 | 1015.4 | 2 BrCl (g) → Br2 (g) + Cl2 (g)  | ΔrG°(298.15 K) = 5.45 ± 0.45 kJ/mol | Gray 1930, Vesper 1934, 3rd Law, est unc | 0.007 | 1017.5 | 2 BrCl (g) → Br2 (g) + Cl2 (g)  | ΔrG°(298.15 K) = 5.73 ± 0.49 kJ/mol | Maric 1994, 3rd Law | 0.004 | 1017.4 | 2 BrCl (g) → Br2 (g) + Cl2 (g)  | ΔrG°(298.15 K) = 4.82 ± 0.10 (×6.442) kJ/mol | Cooper 1998, 3rd Law | 0.003 | 1015.11 | 2 BrCl (g) → Br2 (g) + Cl2 (g)  | ΔrG°(298.15 K) = 4.80 ± 0.45 (×1.477) kJ/mol | Brauer 1935, 3rd Law, est unc | 0.003 | 1016.2 | 2 BrCl (g) → Br2 (g) + Cl2 (g)  | ΔrG°(462 K) = 7.34 ± 0.70 kJ/mol | Beeson 1939a, 3rd Law, est unc | 0.003 | 1016.8 | 2 BrCl (g) → Br2 (g) + Cl2 (g)  | ΔrG°(310 K) = 4.89 ± 0.40 (×1.756) kJ/mol | Mattraw 1954, 3rd Law, est unc | 0.001 | 1015.7 | 2 BrCl (g) → Br2 (g) + Cl2 (g)  | ΔrH°(298.15 K) = 1.31 ± 1.0 kJ/mol | Jost 1931, 2nd Law, est unc | 0.001 | 1015.6 | 2 BrCl (g) → Br2 (g) + Cl2 (g)  | ΔrG°(298.15 K) = 4.73 ± 1.0 kJ/mol | Jost 1931, 3rd Law, est unc | 0.000 | 1016.6 | 2 BrCl (g) → Br2 (g) + Cl2 (g)  | ΔrG°(500 K) = 8.40 ± 1.7 kJ/mol | Schutza 1938, 3rd Law, est unc | 0.000 | 1014.1 | BrCl (g) → Br (g) + Cl (g)  | ΔrH°(0 K) = 17934 ± 26 (×3.668) cm-1 | Clyne 1979, Clyne 1978, Clyne 1978a | 0.000 | 1014.9 | BrCl (g) → Br (g) + Cl (g)  | ΔrH°(0 K) = 51.62 ± 0.3 kcal/mol | Feller 2008 |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122o of the Thermochemical Network (2020); available at ATcT.anl.gov |
4
|
|
Y.-C. Chang, B. Xiong, D. H. Bross, B. Ruscic, and C. Y. Ng,
A Vacuum Ultraviolet laser Pulsed Field Ionization-Photoion Study of Methane (CH4): Determination of the Appearance Energy of Methylium From Methane with Unprecedented Precision and the Resulting Impact on the Bond Dissociation Energies of CH4 and CH4+.
Phys. Chem. Chem. Phys. 19, 9592-9605 (2017)
[DOI: 10.1039/c6cp08200a] (part of 2017 PCCP Hot Articles collection)
|
5
|
|
P. B. Changala, T. L. Nguyen, J. H. Baraban, G. B. Ellison, J. F. Stanton, D. H. Bross, and B. Ruscic,
Active Thermochemical Tables: The Adiabatic Ionization Energy of Hydrogen Peroxide.
J. Phys. Chem. A 121, 8799-8806 (2017)
[DOI: 10.1021/acs.jpca.7b06221] (highlighted on the journal cover)
|
6
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|