Selected ATcT [1, 2] enthalpy of formation based on version 1.122o of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122h [4] to include the ionization energy of H2O2. [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
t-Butyl(CH3)3C (g)C[C](C)C75.5950.30± 0.66kJ/mol57.1143 ±
0.0033
1605-73-8*0

Representative Geometry of (CH3)3C (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of (CH3)3C (g)

The 20 contributors listed below account only for 62.2% of the provenance of ΔfH° of (CH3)3C (g).
A total of 135 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
18.93015.6 CH(CH3)3 (g) → (CH3)3C (g) H (g) ΔrH°(0 K) = 95.15 ± 0.30 kcal/molKlippenstein 2017
8.33018.6 (CH3)3C (g) → CH3CH2CH2CH2 (g) ΔrH°(0 K) = 6.46 ± 0.25 kcal/molKlippenstein 2017
6.33022.6 (CH3)2CHCH2 (g) → (CH3)3C (g) ΔrH°(0 K) = -5.17 ± 0.25 kcal/molKlippenstein 2017
6.03012.1 (CH3)3C (g) HBr (g) → CH(CH3)3 (g) Br (g) ΔrG°(388 K) = -17.6 ± 2.2 kJ/molRussell 1988b, 3rd Law
5.03021.6 CH(CH3)3 (g) → (CH3)2CHCH2 (g) H (g) ΔrH°(0 K) = 100.35 ± 0.30 kcal/molKlippenstein 2017
2.23012.2 (CH3)3C (g) HBr (g) → CH(CH3)3 (g) Br (g) ΔrH°(388 K) = -34.5 ± 3.6 kJ/molRussell 1988b, 2nd Law
1.92972.1 CH(CH3)3 (g) + 13/2 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -2868.98 ± 0.59 kJ/molPittam 1972
1.83019.6 (CH3)3C (g) → CH3CH2CHCH3 (g) ΔrH°(0 K) = 3.15 ± 0.25 (×2) kcal/molKlippenstein 2017
1.73005.9 (CH3)3C (g) → [(CH3)3C]+ (g) ΔrH°(0 K) = 6.827 ± 0.040 eVRuscic W1RO
1.1118.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
1.03016.5 CH3CHCH3 (g) → CH3CH2 (g) (CH3)3C (g) ΔrH°(0 K) = -0.77 ± 0.85 kcal/molRuscic W1RO
0.92981.1 CH3CH2CH2CH2 (g) CH3CH2CH3 (g) → CH3CH2CH2 (g) CH3CH2CH2CH3 (g) ΔrG°(525 K) = -0.1 ± 2 (×1.044) kJ/molSeetula 1997, 3rd Law, est unc
0.93016.2 CH3CHCH3 (g) → CH3CH2 (g) (CH3)3C (g) ΔrH°(0 K) = -1.28 ± 0.90 kcal/molRuscic G4
0.93016.4 CH3CHCH3 (g) → CH3CH2 (g) (CH3)3C (g) ΔrH°(0 K) = -1.17 ± 0.90 kcal/molRuscic CBS-n
0.93016.1 CH3CHCH3 (g) → CH3CH2 (g) (CH3)3C (g) ΔrH°(0 K) = -1.25 ± 0.90 kcal/molRuscic G3X
0.82972.2 CH(CH3)3 (g) + 13/2 O2 (g) → 4 CO2 (g) + 5 H2O (cr,l) ΔrH°(298.15 K) = -685.36 ± 0.11 (×1.915) kcal/molProsen 1951
0.73015.5 CH(CH3)3 (g) → (CH3)3C (g) H (g) ΔrH°(0 K) = 95.16 ± 1.50 kcal/molRuscic W1RO
0.73016.3 CH3CHCH3 (g) → CH3CH2 (g) (CH3)3C (g) ΔrH°(0 K) = -1.06 ± 1.0 kcal/molRuscic CBS-n
0.63006.5 [(CH3)3C]- (g) → (CH3)3C (g) ΔrH°(0 K) = -0.048 ± 0.050 eVRuscic W1RO
0.63015.2 CH(CH3)3 (g) → (CH3)3C (g) H (g) ΔrH°(0 K) = 94.12 ± 1.60 kcal/molRuscic G4

Top 10 species with enthalpies of formation correlated to the ΔfH° of (CH3)3C (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
51.5 iso-Butyl(CH3)2CHCH2 (g)CC(C)[CH2]97.1773.18± 0.76kJ/mol57.1143 ±
0.0033
4630-45-9*0
51.1 n-ButylCH3CH2CH2CH2 (g)CCC[CH2]102.7380.22± 0.70kJ/mol57.1143 ±
0.0033
2492-36-6*0
38.9 sec-ButylCH3CH2CHCH3 (g)CC[CH]C90.8366.07± 0.95kJ/mol57.1143 ±
0.0033
2348-55-2*0
35.1 iso-ButaneCH(CH3)3 (g)CC(C)C-106.03-134.64± 0.31kJ/mol58.1222 ±
0.0033
75-28-5*0
30.7 iso-PropylCH3CHCH3 (g)C[CH]C105.3188.44± 0.53kJ/mol43.0877 ±
0.0024
2025-55-0*0
28.1 n-Butylium[CH3CH2CH2CH2]+ (g)CCC[CH2+]827.4803.1± 1.2kJ/mol57.1137 ±
0.0033
25453-90-1*0
25.8 n-ButaneCH3CH2CH2CH3 (g)CCCC-98.47-125.78± 0.25kJ/mol58.1222 ±
0.0033
106-97-8*0
21.1 IsobuteneCH2C(CH3)2 (g)CC(=C)C4.02-17.04± 0.42kJ/mol56.1063 ±
0.0032
115-11-7*0
20.6 sec-Butylium[CH3CH2CHCH3]+ (g)CC[CH+]C792.9769.2± 1.8kJ/mol57.1137 ±
0.0033
16548-59-7*0
20.5 n-PropylCH3CH2CH2 (g)CC[CH2]118.30100.90± 0.55kJ/mol43.0877 ±
0.0024
2143-61-5*0

Most Influential reactions involving (CH3)3C (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.4503022.6 (CH3)2CHCH2 (g) → (CH3)3C (g) ΔrH°(0 K) = -5.17 ± 0.25 kcal/molKlippenstein 2017
0.4063018.6 (CH3)3C (g) → CH3CH2CH2CH2 (g) ΔrH°(0 K) = 6.46 ± 0.25 kcal/molKlippenstein 2017
0.2423015.6 CH(CH3)3 (g) → (CH3)3C (g) H (g) ΔrH°(0 K) = 95.15 ± 0.30 kcal/molKlippenstein 2017
0.1923019.6 (CH3)3C (g) → CH3CH2CHCH3 (g) ΔrH°(0 K) = 3.15 ± 0.25 (×2) kcal/molKlippenstein 2017
0.0913006.5 [(CH3)3C]- (g) → (CH3)3C (g) ΔrH°(0 K) = -0.048 ± 0.050 eVRuscic W1RO
0.0843016.5 CH3CHCH3 (g) → CH3CH2 (g) (CH3)3C (g) ΔrH°(0 K) = -0.77 ± 0.85 kcal/molRuscic W1RO
0.0813012.1 (CH3)3C (g) HBr (g) → CH(CH3)3 (g) Br (g) ΔrG°(388 K) = -17.6 ± 2.2 kJ/molRussell 1988b, 3rd Law
0.0803005.9 (CH3)3C (g) → [(CH3)3C]+ (g) ΔrH°(0 K) = 6.827 ± 0.040 eVRuscic W1RO
0.0753016.4 CH3CHCH3 (g) → CH3CH2 (g) (CH3)3C (g) ΔrH°(0 K) = -1.17 ± 0.90 kcal/molRuscic CBS-n
0.0753016.2 CH3CHCH3 (g) → CH3CH2 (g) (CH3)3C (g) ΔrH°(0 K) = -1.28 ± 0.90 kcal/molRuscic G4
0.0753016.1 CH3CHCH3 (g) → CH3CH2 (g) (CH3)3C (g) ΔrH°(0 K) = -1.25 ± 0.90 kcal/molRuscic G3X
0.0613006.2 [(CH3)3C]- (g) → (CH3)3C (g) ΔrH°(0 K) = -0.015 ± 0.061 eVRuscic G4
0.0613016.3 CH3CHCH3 (g) → CH3CH2 (g) (CH3)3C (g) ΔrH°(0 K) = -1.06 ± 1.0 kcal/molRuscic CBS-n
0.0333019.5 (CH3)3C (g) → CH3CH2CHCH3 (g) ΔrH°(0 K) = 3.68 ± 1.2 kcal/molRuscic W1RO
0.0313006.1 [(CH3)3C]- (g) → (CH3)3C (g) ΔrH°(0 K) = 0.005 ± 0.085 eVRuscic G3X
0.0303012.2 (CH3)3C (g) HBr (g) → CH(CH3)3 (g) Br (g) ΔrH°(388 K) = -34.5 ± 3.6 kJ/molRussell 1988b, 2nd Law
0.0283019.2 (CH3)3C (g) → CH3CH2CHCH3 (g) ΔrH°(0 K) = 3.89 ± 1.3 kcal/molRuscic G4
0.0283019.4 (CH3)3C (g) → CH3CH2CHCH3 (g) ΔrH°(0 K) = 4.00 ± 1.3 kcal/molRuscic CBS-n
0.0283006.4 [(CH3)3C]- (g) → (CH3)3C (g) ΔrH°(0 K) = 0.034 ± 0.090 eVRuscic CBS-n
0.0273006.3 [(CH3)3C]- (g) → (CH3)3C (g) ΔrH°(0 K) = 0.007 ± 0.092 eVRuscic CBS-n


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122o of the Thermochemical Network (2020); available at ATcT.anl.gov
4   Y.-C. Chang, B. Xiong, D. H. Bross, B. Ruscic, and C. Y. Ng,
A Vacuum Ultraviolet laser Pulsed Field Ionization-Photoion Study of Methane (CH4): Determination of the Appearance Energy of Methylium From Methane with Unprecedented Precision and the Resulting Impact on the Bond Dissociation Energies of CH4 and CH4+.
Phys. Chem. Chem. Phys. 19, 9592-9605 (2017) [DOI: 10.1039/c6cp08200a] (part of 2017 PCCP Hot Articles collection)
5   P. B. Changala, T. L. Nguyen, J. H. Baraban, G. B. Ellison, J. F. Stanton, D. H. Bross, and B. Ruscic,
Active Thermochemical Tables: The Adiabatic Ionization Energy of Hydrogen Peroxide.
J. Phys. Chem. A 121, 8799-8806 (2017) [DOI: 10.1021/acs.jpca.7b06221] (highlighted on the journal cover)
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.