Selected ATcT [1, 2] enthalpy of formation based on version 1.122o of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122h [4] to include the ionization energy of H2O2. [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Oxonitrate anion[NO]- (g)N#[O-]88.0988.13± 0.25kJ/mol30.00669 ±
0.00031
14967-78-3*0

Representative Geometry of [NO]- (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [NO]- (g)

The 8 contributors listed below account for 90.8% of the provenance of ΔfH° of [NO]- (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
35.41215.14 [NO]- (g) → NO (g) ΔrH°(0 K) = 0.029 ± 0.004 eVFeller 2016, note unc2
22.71214.1 [NO]- (g) → NO (g) ΔrH°(0 K) = 0.026 ± 0.005 eVTravers 1989
11.51214.3 [NO]- (g) → NO (g) ΔrH°(0 K) = 0.025 ± 0.007 eVBurrow 1974
5.61215.12 [NO]- (g) → NO (g) ΔrH°(0 K) = 0.022 ± 0.010 eVArrington 2007, est unc
5.61215.13 [NO]- (g) → NO (g) ΔrH°(0 K) = 0.027 ± 0.010 eVDixon 2003a, est unc
5.61214.2 [NO]- (g) → NO (g) ΔrH°(0 K) = 0.024 ± 0.010 eVSiegel 1972
2.51215.11 [NO]- (g) → NO (g) ΔrH°(0 K) = 0.016 ± 0.015 eVKalcher 2002, est unc
1.41209.2 NO (g) → N (g) O (g) ΔrH°(0 K) = 52400 ± 10 cm-1Dingle 1975

Top 10 species with enthalpies of formation correlated to the ΔfH° of [NO]- (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
25.7 Nitric oxideNO (g)[N]=O90.61791.121± 0.065kJ/mol30.00614 ±
0.00031
10102-43-9*0
25.7 Nitrogen dioxideONO (g)O=[N]=O36.85634.049± 0.065kJ/mol46.00554 ±
0.00060
10102-44-0*0
25.7 Nitrosyl ion[NO]+ (g)N#[O+]984.485984.480± 0.065kJ/mol30.00559 ±
0.00031
14452-93-8*0
25.0 Dinitrogen tetraoxideO2NNO2 (g)O=N(=O)N(=O)=O20.1510.86± 0.14kJ/mol92.0111 ±
0.0012
10544-72-6*0
24.9 Nitrosyl chlorideClNO (g)ClN=O54.45152.549± 0.067kJ/mol65.45884 ±
0.00095
2696-92-6*0
24.3 DioxohydrazineONNO (g)O=NN=O172.89171.12± 0.14kJ/mol60.01228 ±
0.00062
16824-89-8*0
24.3 DioxohydrazineONNO (g, cis)O=NN=O172.89171.12± 0.14kJ/mol60.01228 ±
0.00062
16824-89-8*2
23.1 Nitrogen sesquioxideONN(O)O (g)O=N-[N](=O)[O]90.7286.15± 0.15kJ/mol76.01168 ±
0.00091
10544-73-7*0
21.2 Nitrous acidHONO (g)N(=O)O-73.008-78.665± 0.078kJ/mol47.01348 ±
0.00061
7782-77-6*0
21.2 Nitrous acidHONO (g, trans)N(=O)O-73.008-79.152± 0.078kJ/mol47.01348 ±
0.00061
7782-77-6*1

Most Influential reactions involving [NO]- (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.3801215.14 [NO]- (g) → NO (g) ΔrH°(0 K) = 0.029 ± 0.004 eVFeller 2016, note unc2
0.2431214.1 [NO]- (g) → NO (g) ΔrH°(0 K) = 0.026 ± 0.005 eVTravers 1989
0.1241214.3 [NO]- (g) → NO (g) ΔrH°(0 K) = 0.025 ± 0.007 eVBurrow 1974
0.0601215.13 [NO]- (g) → NO (g) ΔrH°(0 K) = 0.027 ± 0.010 eVDixon 2003a, est unc
0.0601215.12 [NO]- (g) → NO (g) ΔrH°(0 K) = 0.022 ± 0.010 eVArrington 2007, est unc
0.0601214.2 [NO]- (g) → NO (g) ΔrH°(0 K) = 0.024 ± 0.010 eVSiegel 1972
0.0341173.4 [NNN]- (g) CO (g) O2 (g) → CO2 (g) N2 (g) [NO]- (g) ΔrH°(0 K) = -92.54 ± 1.2 kcal/molRuscic W1RO
0.0291173.2 [NNN]- (g) CO (g) O2 (g) → CO2 (g) N2 (g) [NO]- (g) ΔrH°(0 K) = -90.86 ± 1.3 kcal/molRuscic G4
0.0291173.3 [NNN]- (g) CO (g) O2 (g) → CO2 (g) N2 (g) [NO]- (g) ΔrH°(0 K) = -91.02 ± 1.3 kcal/molRuscic CBS-n
0.0271215.11 [NO]- (g) → NO (g) ΔrH°(0 K) = 0.016 ± 0.015 eVKalcher 2002, est unc
0.0251173.1 [NNN]- (g) CO (g) O2 (g) → CO2 (g) N2 (g) [NO]- (g) ΔrH°(0 K) = -91.83 ± 1.4 kcal/molRuscic G3X
0.0151214.4 [NO]- (g) → NO (g) ΔrH°(0 K) = 0.026 ± 0.02 eVParkes 1972
0.0051215.9 [NO]- (g) → NO (g) ΔrH°(0 K) = 0.027 ± 0.035 eVParthiban 2001
0.0021215.10 [NO]- (g) → NO (g) ΔrH°(0 K) = 0.025 ± 0.050 eVMcCarthy 1998, est unc
0.0021215.8 [NO]- (g) → NO (g) ΔrH°(0 K) = 0.031 ± 0.050 eVParthiban 2001, Ruscic W1RO
0.0021218.1 [NO]- (g) → N (g) O- (g) ΔrH°(0 K) = 487 ± 5 kJ/molArrington 2007, est unc
0.0011218.2 [NO]- (g) → N (g) O- (g) ΔrH°(0 K) = 116.80 ± 1.50 kcal/molRuscic W1RO
0.0011217.8 [NO]- (g) → N (g) O (g) ΔrH°(0 K) = 150.14 ± 1.50 kcal/molRuscic W1RO
0.0011217.7 [NO]- (g) → N (g) O (g) ΔrH°(0 K) = 150.50 ± 1.60 kcal/molRuscic CBS-n
0.0001603.1 HNO (g) → H+ (g) [NO]- (g) ΔrH°(298.15 K) = 362.5 ± 2 kcal/molJanaway 2000, est unc


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122o of the Thermochemical Network (2020); available at ATcT.anl.gov
4   Y.-C. Chang, B. Xiong, D. H. Bross, B. Ruscic, and C. Y. Ng,
A Vacuum Ultraviolet laser Pulsed Field Ionization-Photoion Study of Methane (CH4): Determination of the Appearance Energy of Methylium From Methane with Unprecedented Precision and the Resulting Impact on the Bond Dissociation Energies of CH4 and CH4+.
Phys. Chem. Chem. Phys. 19, 9592-9605 (2017) [DOI: 10.1039/c6cp08200a] (part of 2017 PCCP Hot Articles collection)
5   P. B. Changala, T. L. Nguyen, J. H. Baraban, G. B. Ellison, J. F. Stanton, D. H. Bross, and B. Ruscic,
Active Thermochemical Tables: The Adiabatic Ionization Energy of Hydrogen Peroxide.
J. Phys. Chem. A 121, 8799-8806 (2017) [DOI: 10.1021/acs.jpca.7b06221] (highlighted on the journal cover)
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.