Selected ATcT [1, 2] enthalpy of formation based on version 1.122o of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122h [4] to include the ionization energy of H2O2. [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Vinylium[CH2CH]+ (g)[CH+]1[CH][H]11118.951115.50± 0.57kJ/mol27.0447 ±
0.0016
14604-48-9*0

Representative Geometry of [CH2CH]+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [CH2CH]+ (g)

The 20 contributors listed below account only for 67.9% of the provenance of ΔfH° of [CH2CH]+ (g).
A total of 51 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
25.24304.1 CH2CHCl (g) → [CH2CH]+ (g) Cl (g) ΔrH°(0 K) = 12.530 ± 0.010 eVShuman 2008
8.02067.1 CH2CH2 (g) → [CH2CH]+ (g) H (g) ΔrH°(0 K) = 13.22 ± 0.02 eVStockbauer 1975a
6.34304.3 CH2CHCl (g) → [CH2CH]+ (g) Cl (g) ΔrH°(0 K) = 12.538 ± 0.02 eVSheng 1995
2.52057.12 CH2CH (g) → [CH2CH]+ (g) ΔrH°(0 K) = 8.485 ± 0.035 eVLau 2005, Lau 2006a
2.12062.5 [CH2CH]+ (g) → HCCH (g) H+ (g) ΔrH°(0 K) = 153.00 ± 0.90 kcal/molParthiban 2001, Ruscic W1RO
2.12061.5 [CH2CH]+ (g) CH4 (g) → [CH3]+ (g) CH2CH2 (g) ΔrH°(0 K) = 25.61 ± 0.9 kcal/molRuscic W1RO, Lago 2006
1.92057.11 CH2CH (g) → [CH2CH]+ (g) ΔrH°(0 K) = 8.471 ± 0.040 eVRuscic W1RO, Parthiban 2001
1.72063.2 [CH2CH]+ (g) H (g) → [HCCH]+ (g) H2 (g) ΔrH°(0 K) = -0.9 ± 1.0 kcal/molHawley 1989, est unc
1.72063.3 [CH2CH]+ (g) H (g) → [HCCH]+ (g) H2 (g) ΔrH°(0 K) = -0.7 ± 1.0 kcal/molHawley 1992, est unc
1.72061.4 [CH2CH]+ (g) CH4 (g) → [CH3]+ (g) CH2CH2 (g) ΔrH°(0 K) = 26.05 ± 1.0 kcal/molRuscic CBS-n
1.72061.2 [CH2CH]+ (g) CH4 (g) → [CH3]+ (g) CH2CH2 (g) ΔrH°(0 K) = 25.05 ± 1.0 kcal/molRuscic G4
1.64761.4 CH2CHBr (g) CH4 (g) → CH2CH2 (g) CH3Br (g) ΔrH°(0 K) = 4.61 ± 1.0 kcal/molRuscic G4
1.54304.2 CH2CHCl (g) → [CH2CH]+ (g) Cl (g) ΔrH°(0 K) = 12.54 ± 0.04 eVReinke 1973, AE corr
1.54762.4 CH2CHBr (g) CH3F (g) → CH2CHF (g) CH3Br (g) ΔrH°(0 K) = -3.30 ± 1.0 kcal/molRuscic G4
1.42057.2 CH2CH (g) → [CH2CH]+ (g) ΔrH°(0 K) = 8.43 ± 0.03 (×1.542) eVBerkowitz 1988
1.34761.3 CH2CHBr (g) CH4 (g) → CH2CH2 (g) CH3Br (g) ΔrH°(0 K) = 4.57 ± 1.1 kcal/molRuscic G3X
1.35403.1 CH3CHBr2 (g) → CH2CHBr (g) HBr (g) ΔrH°(298.15 K) = 16.8 ± 0.6 kcal/molLevanova 1970, 2nd Law
1.22067.2 CH2CH2 (g) → [CH2CH]+ (g) H (g) ΔrH°(0 K) = 13.25 ± 0.05 eVChupka 1969
1.24763.4 CH2CHBr (g) CH3Cl (g) → CH2CHCl (g) CH3Br (g) ΔrH°(0 K) = -1.13 ± 1.0 kcal/molRuscic G4
1.24762.3 CH2CHBr (g) CH3F (g) → CH2CHF (g) CH3Br (g) ΔrH°(0 K) = -3.62 ± 1.1 kcal/molRuscic G3X

Top 10 species with enthalpies of formation correlated to the ΔfH° of [CH2CH]+ (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
96.5 Vinyl bromideCH2CHBr (g)C=CBr88.5773.76± 0.58kJ/mol106.9492 ±
0.0019
593-60-2*0
54.2 trans-1,2-DibromoetheneCHBrCHBr (g, trans)C(\Br)=C/Br121.2101.4± 2.1kJ/mol185.8453 ±
0.0026
590-12-5*0
54.2 cis-1,2-DibromoetheneCHBrCHBr (g, cis)C(\Br)=C\Br121.0100.4± 2.1kJ/mol185.8453 ±
0.0026
590-11-4*0
54.2 1,2-DibromoetheneCHBrCHBr (g)C(Br)=CBr121.0100.8± 2.1kJ/mol185.8453 ±
0.0026
540-49-8*0
51.9 1,1-DibromoetheneCH2CBr2 (g)C=C(Br)Br125.1104.8± 2.2kJ/mol185.8453 ±
0.0026
593-92-0*0
50.5 Vinyl iodideCH2CHI (g)C=CI139.5130.7± 1.2kJ/mol153.9497 ±
0.0016
593-66-8*0
27.4 Vinyl chlorideCH2CHCl (g)C=CCl29.2621.68± 0.30kJ/mol62.4979 ±
0.0018
75-01-4*0
15.6 1,1-DibromoethaneCH3CHBr2 (g)CC(Br)Br-5.4-32.4± 1.8kJ/mol187.8612 ±
0.0026
557-91-5*0
15.5 EthyleneCH2CH2 (g)C=C60.8752.35± 0.12kJ/mol28.0532 ±
0.0016
74-85-1*0
15.5 Ethylene cation[CH2CH2]+ (g)C=[CH2+]1075.181067.97± 0.12kJ/mol28.0526 ±
0.0016
34470-02-5*0

Most Influential reactions involving [CH2CH]+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.0004767.1 CH2CHI (g) → [CH2CH]+ (g) I (g) ΔrH°(0 K) = 11.262 ± 0.010 eVShuman 2008
0.9534765.1 CH2CHBr (g) → [CH2CH]+ (g) Br (g) ΔrH°(0 K) = 11.9010 ± 0.0015 eVQian 2004
0.3384304.1 CH2CHCl (g) → [CH2CH]+ (g) Cl (g) ΔrH°(0 K) = 12.530 ± 0.010 eVShuman 2008
0.0844304.3 CH2CHCl (g) → [CH2CH]+ (g) Cl (g) ΔrH°(0 K) = 12.538 ± 0.02 eVSheng 1995
0.0842067.1 CH2CH2 (g) → [CH2CH]+ (g) H (g) ΔrH°(0 K) = 13.22 ± 0.02 eVStockbauer 1975a
0.0342057.12 CH2CH (g) → [CH2CH]+ (g) ΔrH°(0 K) = 8.485 ± 0.035 eVLau 2005, Lau 2006a
0.0334765.2 CH2CHBr (g) → [CH2CH]+ (g) Br (g) ΔrH°(0 K) = 11.902 ± 0.008 eVLago 2006
0.0262057.11 CH2CH (g) → [CH2CH]+ (g) ΔrH°(0 K) = 8.471 ± 0.040 eVRuscic W1RO, Parthiban 2001
0.0222062.5 [CH2CH]+ (g) → HCCH (g) H+ (g) ΔrH°(0 K) = 153.00 ± 0.90 kcal/molParthiban 2001, Ruscic W1RO
0.0222061.5 [CH2CH]+ (g) CH4 (g) → [CH3]+ (g) CH2CH2 (g) ΔrH°(0 K) = 25.61 ± 0.9 kcal/molRuscic W1RO, Lago 2006
0.0214304.2 CH2CHCl (g) → [CH2CH]+ (g) Cl (g) ΔrH°(0 K) = 12.54 ± 0.04 eVReinke 1973, AE corr
0.0192057.2 CH2CH (g) → [CH2CH]+ (g) ΔrH°(0 K) = 8.43 ± 0.03 (×1.542) eVBerkowitz 1988
0.0182063.2 [CH2CH]+ (g) H (g) → [HCCH]+ (g) H2 (g) ΔrH°(0 K) = -0.9 ± 1.0 kcal/molHawley 1989, est unc
0.0182063.3 [CH2CH]+ (g) H (g) → [HCCH]+ (g) H2 (g) ΔrH°(0 K) = -0.7 ± 1.0 kcal/molHawley 1992, est unc
0.0172061.2 [CH2CH]+ (g) CH4 (g) → [CH3]+ (g) CH2CH2 (g) ΔrH°(0 K) = 25.05 ± 1.0 kcal/molRuscic G4
0.0172061.4 [CH2CH]+ (g) CH4 (g) → [CH3]+ (g) CH2CH2 (g) ΔrH°(0 K) = 26.05 ± 1.0 kcal/molRuscic CBS-n
0.0132067.2 CH2CH2 (g) → [CH2CH]+ (g) H (g) ΔrH°(0 K) = 13.25 ± 0.05 eVChupka 1969
0.0082061.1 [CH2CH]+ (g) CH4 (g) → [CH3]+ (g) CH2CH2 (g) ΔrH°(0 K) = 24.32 ± 1.1 (×1.325) kcal/molRuscic G3X
0.0082063.8 [CH2CH]+ (g) H (g) → [HCCH]+ (g) H2 (g) ΔrH°(0 K) = -1.10 ± 1.50 kcal/molRuscic W1RO
0.0082059.8 [CH2CH]+ (g) → 2 C (g) + 3 H (g) ΔrH°(0 K) = 227.88 ± 1.50 kcal/molRuscic W1RO


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122o of the Thermochemical Network (2020); available at ATcT.anl.gov
4   Y.-C. Chang, B. Xiong, D. H. Bross, B. Ruscic, and C. Y. Ng,
A Vacuum Ultraviolet laser Pulsed Field Ionization-Photoion Study of Methane (CH4): Determination of the Appearance Energy of Methylium From Methane with Unprecedented Precision and the Resulting Impact on the Bond Dissociation Energies of CH4 and CH4+.
Phys. Chem. Chem. Phys. 19, 9592-9605 (2017) [DOI: 10.1039/c6cp08200a] (part of 2017 PCCP Hot Articles collection)
5   P. B. Changala, T. L. Nguyen, J. H. Baraban, G. B. Ellison, J. F. Stanton, D. H. Bross, and B. Ruscic,
Active Thermochemical Tables: The Adiabatic Ionization Energy of Hydrogen Peroxide.
J. Phys. Chem. A 121, 8799-8806 (2017) [DOI: 10.1021/acs.jpca.7b06221] (highlighted on the journal cover)
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.