Selected ATcT [1, 2] enthalpy of formation based on version 1.122o of the Thermochemical Network [3]This version of ATcT results was generated from an expansion of version 1.122h [4] to include the ionization energy of H2O2. [5]. |
||||||||||||||||||
| ||||||||||||||||||
Representative Geometry of FFO (g, singlet) | ||||||||||||||||||
spin ON spin OFF | ||||||||||||||||||
Top contributors to the provenance of ΔfH° of FFO (g, singlet)The 1 contributors listed below account for 99.9% of the provenance of ΔfH° of FFO (g, singlet).Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network. | ||||||||||||||||||
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference |
---|---|---|---|---|
1.000 | 574.5 | FFO (g, singlet) → 2 F (g) + O (g)  | ΔrH°(0 K) = 41.7 ± 5 kcal/mol | Ruscic W1RO, Ruscic CBS-n |
1 |
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner, Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited. J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y] |
|
2 |
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner, Active Thermochemical Tables: Thermochemistry for the 21st Century. J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078] |
|
3 |
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122o of the Thermochemical Network (2020); available at ATcT.anl.gov |
|
4 |
Y.-C. Chang, B. Xiong, D. H. Bross, B. Ruscic, and C. Y. Ng, A Vacuum Ultraviolet laser Pulsed Field Ionization-Photoion Study of Methane (CH4): Determination of the Appearance Energy of Methylium From Methane with Unprecedented Precision and the Resulting Impact on the Bond Dissociation Energies of CH4 and CH4+. Phys. Chem. Chem. Phys. 19, 9592-9605 (2017) [DOI: 10.1039/c6cp08200a] (part of 2017 PCCP Hot Articles collection) |
|
5 |
P. B. Changala, T. L. Nguyen, J. H. Baraban, G. B. Ellison, J. F. Stanton, D. H. Bross, and B. Ruscic, Active Thermochemical Tables: The Adiabatic Ionization Energy of Hydrogen Peroxide. J. Phys. Chem. A 121, 8799-8806 (2017) [DOI: 10.1021/acs.jpca.7b06221] (highlighted on the journal cover) |
|
6 |
B. Ruscic, Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables. Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605] |