Selected ATcT [1, 2] enthalpy of formation based on version 1.122o of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122h [4] to include the ionization energy of H2O2. [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Iodobenzene cation[C6H5I]+ (g)c1ccc(cc1)[I+]1022.661007.22± 0.99kJ/mol204.0078 ±
0.0048
38406-85-8*0

Representative Geometry of [C6H5I]+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [C6H5I]+ (g)

The 20 contributors listed below account only for 69.9% of the provenance of ΔfH° of [C6H5I]+ (g).
A total of 58 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
17.75256.2 C6H5I (g) → [C6H5]+ (g) I (g) ΔrH°(0 K) = 11.178 ± 0.011 eVStevens 2009
8.25266.1 C6H5I (cr,l) HCl (g) → C6H6 (cr,l) + 1/2 I2 (cr,l) + 1/2 Cl2 (g) ΔrH°(298.15 K) = 7.13 ± 0.75 kcal/molChernick 1956, Hartley 1951
4.25259.3 C6H5I (g) → C6H5 (g) I (g) ΔrG°(1250 K) = 27.3 ± 1.0 kcal/molKumaran 1997, 3rd Law, est unc
4.25259.2 C6H5I (g) → C6H5 (g) I (g) ΔrH°(0 K) = 66.7 ± 1.0 kcal/molKumaran 1997, est unc
3.75254.1 C6H5Cl (g) I (g) → C6H5I (g) Cl (g) ΔrH°(0 K) = 1.255 ± 0.048 eVStevens 2009
3.65263.1 C6H5I (cr,l) + 29/2 O2 (g) → 12 CO2 (g) + 5 H2O (cr,l) I2 (cr,l) ΔrH°(298.15 K) = -1526.32 ± 2.0 (×1.164) kcal/molSmith 1956
3.45264.1 C6H5I (cr,l) + 1/2 Br2 (cr,l) → C6H5Br (cr,l) + 1/2 I2 (cr,l) ΔrH°(298.15 K) = -12.85 ± 0.55 kcal/molChernick 1956, Hartley 1951
2.95259.1 C6H5I (g) → C6H5 (g) I (g) ΔrH°(1100 K) = 281.9 ± 5 kJ/molRobaugh 1986, 2nd Law
2.95259.5 C6H5I (g) → C6H5 (g) I (g) ΔrG°(1350 K) = 102.2 ± 5 kJ/molHeckmann 1996, 3rd Law, est unc
2.95256.1 C6H5I (g) → [C6H5]+ (g) I (g) ΔrH°(0 K) = 11.173 ± 0.027 eVStevens 2009
2.15254.2 C6H5Cl (g) I (g) → C6H5I (g) Cl (g) ΔrH°(0 K) = 1.296 ± 0.063 eVStevens 2009
2.05251.1 C6H5Br (cr,l) HCl (g) → C6H6 (cr,l) + 1/2 Br2 (cr,l) + 1/2 Cl2 (g) ΔrH°(298.15 K) = 19.98 ± 0.78 kcal/molChernick 1956, Hartley 1951
1.85275.1 C6H5NO (g) → [C6H5]+ (g) NO (g) ΔrH°(0 K) = 10.607 ± 0.020 eVStevens 2010a
1.64975.9 [C6H5]+ (g) → 6 C (g) + 5 H (g) ΔrH°(0 K) = 4198.8 ± 4 kJ/molLau 2006
1.55259.6 C6H5I (g) → C6H5 (g) I (g) ΔrH°(1350 K) = 279.2 ± 7 kJ/molHeckmann 1996, 2nd Law, est unc
1.44973.14 C6H5 (g) → [C6H5]+ (g) ΔrH°(0 K) = 8.261 ± 0.035 eVLau 2006
1.35192.1 C6H5Cl (g) → [C6H5]+ (g) Cl (g) ΔrH°(0 K) = 12.428 ± 0.040 eVStevens 2009
1.14974.1 [C6H5]- (g) → C6H5 (g) ΔrH°(0 K) = 1.096 ± 0.006 eVGunion 1992
1.15192.5 C6H5Cl (g) → [C6H5]+ (g) Cl (g) ΔrH°(0 K) = 286.7 ± 1 kcal/molPratt 1981
1.14973.12 C6H5 (g) → [C6H5]+ (g) ΔrH°(0 K) = 8.267 ± 0.040 eVRuscic W1RO

Top 10 species with enthalpies of formation correlated to the ΔfH° of [C6H5I]+ (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.8 IodobenzeneC6H5I (g)c1ccc(cc1)I177.66161.67± 0.99kJ/mol204.0084 ±
0.0048
591-50-4*0
89.4 IodobenzeneC6H5I (cr,l)c1ccc(cc1)I112.8112.9± 1.1kJ/mol204.0084 ±
0.0048
591-50-4*500
63.6 Phenylium[C6H5]+ (g)c1cccc[c+]11148.391135.61± 0.85kJ/mol77.1034 ±
0.0048
17333-73-2*0
63.6 Phenylium[C6H5]+ (g, singlet)c1cccc[c+]11148.391135.61± 0.85kJ/mol77.1034 ±
0.0048
17333-73-2*2
39.4 BromobenzeneC6H5Br (g)c1ccc(cc1)Br126.6104.6± 1.3kJ/mol157.0079 ±
0.0049
108-86-1*0
39.4 BromobenzeneC6H5Br (cr,l)c1ccc(cc1)Br59.9± 1.3kJ/mol157.0079 ±
0.0049
108-86-1*500
39.4 Bromobenzene cation[C6H5Br]+ (g)c1ccc(cc1)[Br+]994.8973.2± 1.3kJ/mol157.0074 ±
0.0049
55450-33-4*0
24.5 NitrosobenzeneC6H5NO (g)c1ccc(cc1)N=O215.7198.7± 1.2kJ/mol107.1100 ±
0.0048
586-96-9*0
24.0 Phenylium[C6H5]+ (g, triplet)c1cccc[c+]11250.61237.6± 1.6kJ/mol77.1034 ±
0.0048
17333-73-2*1
23.9 PhenylC6H5 (g)c1cccc[c]1350.35336.99± 0.53kJ/mol77.1039 ±
0.0048
2396-01-2*0

Most Influential reactions involving [C6H5I]+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9695252.1 C6H5I (g) → [C6H5I]+ (g) ΔrH°(0 K) = 70638 ± 5 cm-1Kwon 2002
0.0255252.2 C6H5I (g) → [C6H5I]+ (g) ΔrH°(0 K) = 8.754 ± 0.002 (×1.915) eVHolland 2000a
0.0155257.1 [C6H5I]+ (g) → [C6H5]+ (g) I (g) ΔrH°(0 K) = 2.48 ± 0.06 (×1.114) eVDunbar 1984
0.0105257.2 [C6H5I]+ (g) → [C6H5]+ (g) I (g) ΔrH°(0 K) = 2.41 ± 0.08 eVDunbar 1985, Dunbar 1984, est unc
0.0005252.9 C6H5I (g) → [C6H5I]+ (g) ΔrH°(0 K) = 8.77 ± 0.02 eVBaer 1976
0.0005252.7 C6H5I (g) → [C6H5I]+ (g) ΔrH°(0 K) = 8.75 ± 0.02 eVKlasinc 1983, est unc
0.0005252.8 C6H5I (g) → [C6H5I]+ (g) ΔrH°(0 K) = 8.766 ± 0.02 eVPotts 1980a, est unc, von Niessen 1982
0.0005252.6 C6H5I (g) → [C6H5I]+ (g) ΔrH°(0 K) = 8.73 ± 0.02 (×1.414) eVWatanabe 1957
0.0005252.5 C6H5I (g) → [C6H5I]+ (g) ΔrH°(0 K) = 8.73 ± 0.02 (×1.414) eVBralsford 1960
0.0005252.4 C6H5I (g) → [C6H5I]+ (g) ΔrH°(0 K) = 8.73 ± 0.03 eVWatanabe 1962
0.0005252.10 C6H5I (g) → [C6H5I]+ (g) ΔrH°(0 K) = 8.73 ± 0.03 eVWatanabe 1957
0.0005252.11 C6H5I (g) → [C6H5I]+ (g) ΔrH°(0 K) = 8.73 ± 0.04 eVSergeev 1970, note unc3
0.0005253.6 C6H5I (g) → [C6H5I]+ (g) ΔrH°(0 K) = 8.73 ± 0.05 eVSergeev 1970, est unc
0.0005253.7 C6H5I (g) → [C6H5I]+ (g) ΔrH°(0 K) = 8.79 ± 0.05 eVFujisawa 1986, est unc
0.0005253.5 C6H5I (g) → [C6H5I]+ (g) ΔrH°(0 K) = 8.70 ± 0.05 (×1.164) eVBehan 1976
0.0005253.4 C6H5I (g) → [C6H5I]+ (g) ΔrH°(0 K) = 8.685 ± 0.05 (×1.477) eVDannacher 1983, est unc
0.0005253.3 C6H5I (g) → [C6H5I]+ (g) ΔrH°(0 K) = 8.685 ± 0.05 (×1.477) eVMomigny 1968, est unc
0.0005252.3 C6H5I (g) → [C6H5I]+ (g) ΔrH°(0 K) = 8.67 ± 0.02 (×4.458) eVTurner 1970, est unc
0.0005253.2 C6H5I (g) → [C6H5I]+ (g) ΔrH°(0 K) = 8.67 ± 0.05 (×1.795) eVBoschi 1974, est unc
0.0005253.1 C6H5I (g) → [C6H5I]+ (g) ΔrH°(0 K) = 8.67 ± 0.05 (×1.795) eVSell 1978a, est unc


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122o of the Thermochemical Network (2020); available at ATcT.anl.gov
4   Y.-C. Chang, B. Xiong, D. H. Bross, B. Ruscic, and C. Y. Ng,
A Vacuum Ultraviolet laser Pulsed Field Ionization-Photoion Study of Methane (CH4): Determination of the Appearance Energy of Methylium From Methane with Unprecedented Precision and the Resulting Impact on the Bond Dissociation Energies of CH4 and CH4+.
Phys. Chem. Chem. Phys. 19, 9592-9605 (2017) [DOI: 10.1039/c6cp08200a] (part of 2017 PCCP Hot Articles collection)
5   P. B. Changala, T. L. Nguyen, J. H. Baraban, G. B. Ellison, J. F. Stanton, D. H. Bross, and B. Ruscic,
Active Thermochemical Tables: The Adiabatic Ionization Energy of Hydrogen Peroxide.
J. Phys. Chem. A 121, 8799-8806 (2017) [DOI: 10.1021/acs.jpca.7b06221] (highlighted on the journal cover)
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.