Selected ATcT [1, 2] enthalpy of formation based on version 1.122h of the Thermochemical Network [3] This version of ATcT results was generated from an expansion of version 1.122e [4] to include results centered on the determination of the appearance energy of CH3+ from CH4. [5].
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Nitrogen dioxide | ONO (g) | | 36.859 | 34.052 | ± 0.065 | kJ/mol | 46.00554 ± 0.00060 | 10102-44-0*0 |
|
Representative Geometry of ONO (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of ONO (g)The 20 contributors listed below account only for 84.4% of the provenance of ΔfH° of ONO (g). A total of 36 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 22.3 | 1209.1 | NO (g) → N (g) + O (g)  | ΔrH°(0 K) = 52400 ± 10 cm-1 | Callear 1970 | 22.3 | 1209.2 | NO (g) → N (g) + O (g)  | ΔrH°(0 K) = 52400 ± 10 cm-1 | Dingle 1975 | 17.2 | 1209.4 | NO (g) → N (g) + O (g)  | ΔrH°(0 K) = 52408 ± 10 (×1.139) cm-1 | Kley 1973, Miescher 1974, est unc | 4.0 | 1209.3 | NO (g) → N (g) + O (g)  | ΔrH°(0 K) = 52420 ± 12 (×1.957) cm-1 | Miescher 1974, Huber 1979 | 3.2 | 1162.3 | N2 (g) → N+ (g) + N (g)  | ΔrH°(0 K) = 24.2880 ± 0.0009 eV | Tang 2005 | 2.6 | 1162.2 | N2 (g) → N+ (g) + N (g)  | ΔrH°(0 K) = 24.2883 ± 0.0010 eV | Tang 2005 | 2.6 | 1162.1 | N2 (g) → N+ (g) + N (g)  | ΔrH°(0 K) = 24.2888 ± 0.0010 eV | Tang 2005 | 1.7 | 1440.3 | (NH4)NO3 (cr,l) → N2 (g) + 1/2 O2 (g) + 2 H2O (cr,l)  | ΔrH°(293.65 K) = -49.44 ± 0.06 kcal/mol | Becker 1934 | 1.0 | 1212.4 | NO (g) → N (g) + O (g)  | ΔrH°(0 K) = 626.47 ± 0.56 kJ/mol | Harding 2008 | 0.8 | 1211.10 | NO (g) → N (g) + O (g)  | ΔrH°(0 K) = 149.82 ± 0.15 kcal/mol | Karton 2007a, Karton 2008 | 0.7 | 1209.6 | NO (g) → N (g) + O (g)  | ΔrH°(0 K) = 6.503 ± 0.004 (×1.682) eV | Brewer 1956, Frisch 1965 | 0.7 | 1594.4 | HNO (g) → H (g) + N (g) + O (g)  | ΔrH°(0 K) = 823.10 ± 0.56 kJ/mol | Harding 2008 | 0.7 | 1210.10 | NO (g) → N (g) + O (g)  | ΔrH°(0 K) = 149.78 ± 0.16 kcal/mol | Feller 2014 | 0.6 | 1212.2 | NO (g) → N (g) + O (g)  | ΔrH°(0 K) = 626.74 ± 0.70 kJ/mol | Harding 2008 | 0.6 | 1223.1 | 1/2 N2 (g) + 1/2 O2 (g) → NO (g)  | ΔrH°(0 K) = 90.0 ± 0.8 kJ/mol | Szakacs 2011 | 0.5 | 1600.4 | HNO (g) → H (g) + NO (g)  | ΔrH°(0 K) = 16450 ± 10 cm-1 | Dixon 1981, Dixon 1984, Dixon 1996 | 0.5 | 1212.3 | NO (g) → N (g) + O (g)  | ΔrH°(0 K) = 626.13 ± 0.74 kJ/mol | Harding 2008 | 0.5 | 1212.1 | NO (g) → N (g) + O (g)  | ΔrH°(0 K) = 626.22 ± 0.75 kJ/mol | Tajti 2004, est unc | 0.5 | 1671.1 | 2 ONO (g) + 1/2 O2 (g) + H2O (g) → 2 HON(O)O (g)  | ΔrG°(371 K) = -6.04 ± 0.63 kJ/mol | Jones 1943, 3rd Law | 0.5 | 1150.11 | N2 (g) → 2 N (g)  | ΔrH°(0 K) = 78678.6 ± 18.0 cm-1 | Roncin 1984, note N2 |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of ONO (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 99.9 | Nitric oxide | NO (g) | | 90.619 | 91.123 | ± 0.065 | kJ/mol | 30.00614 ± 0.00031 | 10102-43-9*0 | 99.7 | Nitrosyl ion | [NO]+ (g) | | 984.487 | 984.482 | ± 0.065 | kJ/mol | 30.00559 ± 0.00031 | 14452-93-8*0 | 97.2 | Dinitrogen tetraoxide | O2NNO2 (g) | | 20.15 | 10.86 | ± 0.14 | kJ/mol | 92.0111 ± 0.0012 | 10544-72-6*0 | 96.5 | Nitrosyl chloride | ClNO (g) | | 54.453 | 52.552 | ± 0.067 | kJ/mol | 65.45884 ± 0.00095 | 2696-92-6*0 | 94.3 | Dioxohydrazine | ONNO (g) | | 172.89 | 171.13 | ± 0.14 | kJ/mol | 60.01228 ± 0.00062 | 16824-89-8*0 | 94.3 | Dioxohydrazine | ONNO (g, cis) | | 172.89 | 171.13 | ± 0.14 | kJ/mol | 60.01228 ± 0.00062 | 16824-89-8*2 | 89.9 | Nitrogen sesquioxide | ONN(O)O (g) | | 90.72 | 86.15 | ± 0.15 | kJ/mol | 76.01168 ± 0.00091 | 10544-73-7*0 | 82.5 | Nitrous acid | HONO (g) | | -73.005 | -78.662 | ± 0.079 | kJ/mol | 47.01348 ± 0.00061 | 7782-77-6*0 | 82.5 | Nitrous acid | HONO (g, trans) | | -73.005 | -79.149 | ± 0.079 | kJ/mol | 47.01348 ± 0.00061 | 7782-77-6*1 | 70.7 | Dinitrogen tetraoxide | O2NNO2 (cr,l) | | -37.86 | -27.01 | ± 0.19 | kJ/mol | 92.0111 ± 0.0012 | 10544-72-6*500 |
|
Most Influential reactions involving ONO (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.947 | 1681.1 | ON(O)O (g) → O (g) + ONO (g)  | ΔrH°(0 K) = 17079 ± 15 cm-1 | Johnston 1996, Davis 1993 | 0.877 | 1227.1 | [ONO]- (g) → ONO (g)  | ΔrH°(0 K) = 2.273 ± 0.005 eV | Ervin 1988 | 0.816 | 5243.2 | CH3OH (g) + 2 ONO (g) → HON(O)O (g) + CH3ONO (g)  | ΔrG°(393.95 K) = -0.865 ± 0.105 kcal/mol | Silverwood 1967, 3rd Law | 0.800 | 1296.10 | ONN(O)O (g) → NO (g) + ONO (g)  | ΔrG°(300 K) = -1.84 ± 0.07 kJ/mol | Beattie 1957, 3rd Law, apud Gurvich TPIS | 0.723 | 1231.7 | ONO (g) → NO (g) + O (g)  | ΔrH°(0 K) = 25128.56 ± 0.03 cm-1 | Michalski 2004 | 0.710 | 1638.8 | NO (g) + ONO (g) + H2O (g) → 2 HONO (g)  | ΔrG°(298.15 K) = -1.44 ± 0.10 kJ/mol | Vosper 1976, 3rd Law | 0.583 | 1226.1 | ONO (g) → [ONO]+ (g)  | ΔrH°(0 K) = 77320 ± 20 cm-1 | Haber 1988 | 0.563 | 1335.6 | O2NNO2 (g) → 2 ONO (g)  | ΔrG°(342.9 K) = -3.020 ± 0.041 kJ/mol | Bodenstein 1922, 3rd Law | 0.418 | 1712.1 | HOONO (g, cis, cis) → OH (g) + ONO (g)  | ΔrH°(450 K) = 86.08 ± 0.54 kJ/mol | Golden 2003, Hippler 2002, 3rd Law | 0.398 | 1226.2 | ONO (g) → [ONO]+ (g)  | ΔrH°(0 K) = 9.586 ± 0.003 eV | Jarvis 1999a | 0.289 | 1671.1 | 2 ONO (g) + 1/2 O2 (g) + H2O (g) → 2 HON(O)O (g)  | ΔrG°(371 K) = -6.04 ± 0.63 kJ/mol | Jones 1943, 3rd Law | 0.260 | 1231.6 | ONO (g) → NO (g) + O (g)  | ΔrH°(0 K) = 25128.57 ± 0.05 cm-1 | Jost 1996 | 0.165 | 1321.4 | ONN(OO) (g, trans) + ONO (g) → ONN(O)O (g) + N(OO) (g)  | ΔrH°(0 K) = -1.16 ± 0.9 kcal/mol | Ruscic W1RO | 0.163 | 1334.6 | O2NNO2 (g) → 2 ONO (g)  | ΔrG°(304.0 K) = 3.755 ± 0.076 kJ/mol | Harris 1967, 3rd Law | 0.161 | 1337.3 | [O2NNO2]+ (g) → ONO (g) + [ONO]+ (g)  | ΔrH°(0 K) = -8.20 ± 1.50 kcal/mol | Ruscic W1RO | 0.157 | 1717.1 | OH (g) + ONO (g) → HOONO (g)  | ΔrG°(450 K) = -22.06 ± 0.88 kJ/mol | Hippler 2002, 3rd Law | 0.153 | 1358.6 | O2NONO2 (g) → ONO (g) + ON(O)O (g)  | ΔrG°(294.8 K) = 12.23 ± 0.17 kcal/mol | Matsumoto 2006, 3rd Law | 0.145 | 5177.5 | C6H5N(O)O (g) + NO (g) → C6H5NO (g) + ONO (g)  | ΔrH°(0 K) = 19.87 ± 0.9 kcal/mol | Ruscic W1RO | 0.142 | 1337.2 | [O2NNO2]+ (g) → ONO (g) + [ONO]+ (g)  | ΔrH°(0 K) = -6.43 ± 1.60 kcal/mol | Ruscic G4 | 0.140 | 1299.7 | [ONN(O)O]- (g, vdW) → NO (g) + ONO (g)  | ΔrH°(0 K) = 2.379 ± 0.050 eV | Ruscic W1RO |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122h of the Thermochemical Network (2020); available at ATcT.anl.gov |
4
|
|
J. P. Porterfield, D. H. Bross, B. Ruscic, J. H. Thorpe, T. L. Nguyen, J. H. Baraban, J. F. Stanton, J. W. Daily, and G. B. Ellison,
Thermal Decomposition of Potential Ester Biofuels, Part I: Methyl Acetate and Methyl Butanoate.
J. Chem. Phys. A 121, 4658-4677 (2017)
[DOI: 10.1021/acs.jpca.7b02639] (Veronica Vaida Festschrift)
|
5
|
|
Y.-C. Chang, B. Xiong, D. H. Bross, B. Ruscic, and C. Y. Ng,
A Vacuum Ultraviolet laser Pulsed Field Ionization-Photoion Study of Methane (CH4): Determination of the Appearance Energy of Methylium From Methane with Unprecedented Precision and the Resulting Impact on the Bond Dissociation Energies of CH4 and CH4+.
Phys. Chem. Chem. Phys. 19, 9592-9605 (2017)
[DOI: 10.1039/c6cp08200a] (part of 2017 PCCP Hot Articles collection)
|
6
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|