Selected ATcT [1, 2] enthalpy of formation based on version 1.122h of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122e [4] to include results centered on the determination of the appearance energy of CH3+ from CH4. [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
BromochloraneBrCl (g)BrCl21.87914.435± 0.060kJ/mol115.3567 ±

Representative Geometry of BrCl (g)

spin ON           spin OFF

Top contributors to the provenance of ΔfH° of BrCl (g)

The 2 contributors listed below account for 91.7% of the provenance of ΔfH° of BrCl (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Reaction Measured Quantity Reference
83.0946.2 Br2 (cr,l) → Br2 (g) ΔrH°(298.15 K) = 7.386 ± 0.027 kcal/molHildenbrand 1958
8.61017.6 BrCl (g) → Br2 (g) Cl2 (g) ΔrG°(295.15 K) = 5.419 ± 0.049 kJ/molTellinghuisen 2003, 3rd Law

Top 10 species with enthalpies of formation correlated to the ΔfH° of BrCl (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
93.6 DibromineBr2 (g)BrBr45.6730.88± 0.11kJ/mol159.8080 ±
93.6 Bromine atomBr (g)[Br]117.914111.851± 0.056kJ/mol79.90400 ±
93.6 Bromine atomBr (g, 2P3/2)[Br]117.914111.851± 0.056kJ/mol79.90400 ±
93.6 Bromine atomBr (g, 2P1/2)[Br]161.998155.935± 0.056kJ/mol79.90400 ±
93.6 BromideBr- (g)[Br-]-206.623-212.686± 0.056kJ/mol79.90455 ±
93.1 BromanyliumBr+ (g)[Br+]1257.7741251.711± 0.056kJ/mol79.90345 ±
78.1 Iodine monobromideIBr (g)IBr49.71540.768± 0.067kJ/mol206.8085 ±
45.8 Diatomic bromine cation[Br2]+ (g)Br[Br+]1060.321045.36± 0.23kJ/mol159.8075 ±
27.8 DibromophosgeneCBr2O (g)C(Br)(Br)=O-97.99-113.92± 0.37kJ/mol187.8181 ±
27.0 BromomethaneCH3Br (g)CBr-20.88-36.28± 0.18kJ/mol94.9385 ±

Most Influential reactions involving BrCl (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Reaction Measured Quantity Reference
0.7061017.6 BrCl (g) → Br2 (g) Cl2 (g) ΔrG°(295.15 K) = 5.419 ± 0.049 kJ/molTellinghuisen 2003, 3rd Law
0.3034413.1 CF3Br (g) Cl2 (g) → CF3Cl (g) BrCl (g) ΔrH°(298.15 K) = -10.69 ± 0.30 kcal/molCoomber 1967b, as quoted by Cox 1970
0.2324435.1 Br2 (g) CCl4 (g) → BrCl (g) CCl3Br (g) ΔrH°(298.15 K) = 8.84 ± 0.30 kcal/molMendenhall 1973, as quoted by Pedley 1986
0.1951062.1 HOBr (g) Cl (g) → BrCl (g) OH (g) ΔrG°(298.15 K) = -10.14 ± 1.04 kJ/molLoewenstein 1984, Kukui 1996, Monks 1993a, Loewenstein 1984
0.1704414.1 CF3Cl (g) Br2 (g) → CF3Br (g) BrCl (g) ΔrH°(298.15 K) = 10.49 ± 0.40 kcal/molCoomber 1967b, as quoted by Cox 1970
0.1181014.5 BrCl (g) → Br (g) Cl (g) ΔrH°(0 K) = 18027 ± 5 cm-1Tellinghuisen 2003a
0.1171015.9 BrCl (g) → Br2 (g) Cl2 (g) ΔrG°(301.15 K) = 5.54 ± 0.12 kJ/molVesper 1934, 3rd Law, est unc
0.0131014.2 BrCl (g) → Br (g) Cl (g) ΔrH°(0 K) = 18023 ± 15 cm-1Brown 1988
0.0081015.4 BrCl (g) → Br2 (g) Cl2 (g) ΔrG°(298.15 K) = 5.45 ± 0.45 kJ/molGray 1930, Vesper 1934, 3rd Law, est unc
0.0081017.2 BrCl (g) → Br2 (g) Cl2 (g) ΔrG°(298.15 K) = 5.81 ± 0.45 kJ/molBartlett 1999, 3rd Law
0.0071017.5 BrCl (g) → Br2 (g) Cl2 (g) ΔrG°(298.15 K) = 5.73 ± 0.49 kJ/molMaric 1994, 3rd Law
0.0041017.4 BrCl (g) → Br2 (g) Cl2 (g) ΔrG°(298.15 K) = 4.82 ± 0.10 (×6.442) kJ/molCooper 1998, 3rd Law
0.0031015.11 BrCl (g) → Br2 (g) Cl2 (g) ΔrG°(298.15 K) = 4.80 ± 0.45 (×1.477) kJ/molBrauer 1935, 3rd Law, est unc
0.0031016.2 BrCl (g) → Br2 (g) Cl2 (g) ΔrG°(462 K) = 7.34 ± 0.70 kJ/molBeeson 1939a, 3rd Law, est unc
0.0031016.8 BrCl (g) → Br2 (g) Cl2 (g) ΔrG°(310 K) = 4.89 ± 0.40 (×1.756) kJ/molMattraw 1954, 3rd Law, est unc
0.0011015.6 BrCl (g) → Br2 (g) Cl2 (g) ΔrG°(298.15 K) = 4.73 ± 1.0 kJ/molJost 1931, 3rd Law, est unc
0.0011015.7 BrCl (g) → Br2 (g) Cl2 (g) ΔrH°(298.15 K) = 1.31 ± 1.0 kJ/molJost 1931, 2nd Law, est unc
0.0001016.6 BrCl (g) → Br2 (g) Cl2 (g) ΔrG°(500 K) = 8.40 ± 1.7 kJ/molSchutza 1938, 3rd Law, est unc
0.0001014.1 BrCl (g) → Br (g) Cl (g) ΔrH°(0 K) = 17934 ± 26 (×3.668) cm-1Clyne 1979, Clyne 1978, Clyne 1978a
0.0001014.9 BrCl (g) → Br (g) Cl (g) ΔrH°(0 K) = 51.62 ± 0.3 kcal/molFeller 2008

1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122h of the Thermochemical Network (2020); available at
4   J. P. Porterfield, D. H. Bross, B. Ruscic, J. H. Thorpe, T. L. Nguyen, J. H. Baraban, J. F. Stanton, J. W. Daily, and G. B. Ellison,
Thermal Decomposition of Potential Ester Biofuels, Part I: Methyl Acetate and Methyl Butanoate.
J. Chem. Phys. A 121, 4658-4677 (2017) [DOI: 10.1021/acs.jpca.7b02639] (Veronica Vaida Festschrift)
5   Y.-C. Chang, B. Xiong, D. H. Bross, B. Ruscic, and C. Y. Ng,
A Vacuum Ultraviolet laser Pulsed Field Ionization-Photoion Study of Methane (CH4): Determination of the Appearance Energy of Methylium From Methane with Unprecedented Precision and the Resulting Impact on the Bond Dissociation Energies of CH4 and CH4+.
Phys. Chem. Chem. Phys. 19, 9592-9605 (2017) [DOI: 10.1039/c6cp08200a] (part of 2017 PCCP Hot Articles collection)
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D.

This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.