Selected ATcT [1, 2] enthalpy of formation based on version 1.122h of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122e [4] to include results centered on the determination of the appearance energy of CH3+ from CH4. [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
HexachloroethaneCCl3CCl3 (g)C(C(Cl)(Cl)Cl)(Cl)(Cl)Cl-147.0-149.4± 1.3kJ/mol236.7376 ±
0.0056
67-72-1*0

Representative Geometry of CCl3CCl3 (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of CCl3CCl3 (g)

The 20 contributors listed below account only for 64.2% of the provenance of ΔfH° of CCl3CCl3 (g).
A total of 62 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
12.94238.4 CCl3CCl3 (g) + 3 CH4 (g) → 3 CCl4 (g) + 2 CH3CH3 (g) ΔrH°(0 K) = 17.46 ± 1.50 kcal/molRuscic W1RO
7.84202.4 CH3CCl3 (g) → CCl3CCl3 (g) CH3CH3 (g) ΔrH°(0 K) = 13.43 ± 0.9 kcal/molRuscic W1RO
6.64281.5 CCl3CCl3 (g) → CCl2CCl2 (g) Cl2 (g) ΔrG°(671 K) = 15.9 ± 2.8 kJ/molDainton 1950, Weissman 1980, Manion 2002, 3rd Law
5.04281.4 CCl3CCl3 (g) → CCl2CCl2 (g) Cl2 (g) ΔrG°(776 K) = 1.4 ± 3.2 kJ/molPuyo 1963, Manion 2002, 3rd Law
3.54237.1 CCl4 (g) → CCl3CCl3 (g) Cl2 (g) ΔrG°(696.6 K) = 42.8 ± 5.8 kJ/molHuybrechts 1996, Manion 2002, 3rd Law
2.94286.1 CCl2CCl2 (g) Cl2 (g) → CCl3CCl3 (g) ΔrG°(776 K) = -0.32 ± 1.00 kcal/molPuyo 1963, note unc2
2.94239.4 CCl3CCl3 (g) → 2 CCl3 (g) ΔrH°(0 K) = 68.74 ± 1.50 kcal/molRuscic W1RO
2.74234.4 CCl3CCl3 (g) → 2 C (g) + 6 Cl (g) ΔrH°(0 K) = 544.94 ± 1.50 (×1.215) kcal/molRuscic W1RO
2.54239.2 CCl3CCl3 (g) → 2 CCl3 (g) ΔrH°(0 K) = 70.87 ± 1.60 kcal/molRuscic G4
2.04083.2 CCl4 (l) + 2 H2O (cr,l) → CO2 (g) + 4 HCl (aq, 600 H2O) ΔrH°(298.15 K) = -86.02 ± 0.14 kcal/molHu 1969
2.04286.5 CCl2CCl2 (g) Cl2 (g) → CCl3CCl3 (g) ΔrH°(0 K) = -29.52 ± 1.2 kcal/molRuscic W1RO
1.84202.2 CH3CCl3 (g) → CCl3CCl3 (g) CH3CH3 (g) ΔrH°(0 K) = 10.89 ± 1.0 (×1.874) kcal/molRuscic G4
1.74244.1 CCl3CCl2 (g) → CCl2CCl2 (g) Cl (g) ΔrG°(360 K) = 8.1 ± 0.4 kcal/molNicovich 1996, 3rd Law
1.54238.2 CCl3CCl3 (g) + 3 CH4 (g) → 3 CCl4 (g) + 2 CH3CH3 (g) ΔrH°(0 K) = 22.56 ± 1.60 (×2.709) kcal/molRuscic G4
1.54206.2 CH3CCl3 (l) + 2 O2 (g) → 2 CO2 (g) + 3 HCl (aq, 600 H2O) ΔrH°(298.15 K) = -264.83 ± 0.19 kcal/molHu 1972
1.44240.4 CCl3CCl2 (g) → 2 C (g) + 5 Cl (g) ΔrH°(0 K) = 475.53 ± 1.50 kcal/molRuscic W1RO
1.44281.1 CCl3CCl3 (g) → CCl2CCl2 (g) Cl2 (g) ΔrG°(696.6 K) = 7.3 ± 5.8 (×1.044) kJ/molHuybrechts 1996, Manion 2002
1.34202.3 CH3CCl3 (g) → CCl3CCl3 (g) CH3CH3 (g) ΔrH°(0 K) = 10.59 ± 1.3 (×1.682) kcal/molRuscic CBS-n
1.04245.4 CCl3CCl2 (g) CCl4 (g) → CCl3 (g) CCl3CCl3 (g) ΔrH°(0 K) = -1.94 ± 1.2 kcal/molRuscic W1RO
1.04240.1 CCl3CCl2 (g) → 2 C (g) + 5 Cl (g) ΔrH°(0 K) = 478.35 ± 1.72 (×1.044) kcal/molRuscic G3X

Top 10 species with enthalpies of formation correlated to the ΔfH° of CCl3CCl3 (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
60.5 PentachloroethylCCl3CCl2 (g)C(Cl)(Cl)(Cl)[C](Cl)Cl26.925.0± 1.3kJ/mol201.2849 ±
0.0048
7094-17-9*0
53.3 TetrachloroetheneCCl2CCl2 (g)C(=C(Cl)Cl)(Cl)Cl-22.4-23.3± 1.1kJ/mol165.8322 ±
0.0039
127-18-4*0
53.2 TetrachloroetheneCCl2CCl2 (l)C(=C(Cl)Cl)(Cl)Cl-63.0± 1.1kJ/mol165.8322 ±
0.0039
127-18-4*500
34.1 HexachloroethaneCCl3CCl3 (cr,l)C(C(Cl)(Cl)Cl)(Cl)(Cl)Cl-216.5± 2.8kJ/mol236.7376 ±
0.0056
67-72-1*500
23.4 Pentachloroethylium[CCl3CCl2]+ (g)C(Cl)(Cl)(Cl)[C+](Cl)Cl836.1834.5± 3.3kJ/mol201.2844 ±
0.0048
*7094-17-9*0
22.8 DichloroacetyleneClCCCl (g)ClC#CCl230.05233.36± 0.95kJ/mol94.9268 ±
0.0024
7572-29-4*0
21.9 1,1,1-TrichloroethaneCH3CCl3 (g)CC(Cl)(Cl)Cl-134.34-144.92± 0.48kJ/mol133.4033 ±
0.0031
71-55-6*0
21.8 1,1-DichloroetheneCH2CCl2 (g)C=C(Cl)Cl8.922.93± 0.49kJ/mol96.9427 ±
0.0024
75-35-4*0
21.0 1,1,1-TrichloroethaneCH3CCl3 (l)CC(Cl)(Cl)Cl-177.55± 0.49kJ/mol133.4033 ±
0.0031
71-55-6*500
20.9 1,1-DichloroetheneCH2CCl2 (l)C=C(Cl)Cl-23.81± 0.50kJ/mol96.9427 ±
0.0024
75-35-4*500

Most Influential reactions involving CCl3CCl3 (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.4374235.1 CCl3CCl3 (cr,l) → CCl3CCl3 (g) ΔrH°(298.15 K) = 69.0 ± 4.0 kJ/molManion 2002, Chao 1974, Ivin 1947, Nitta 1941, Lee 1935
0.2054246.4 CCl3CCl2 (g) → CCl3CCl3 (g) CCl2CCl2 (g) ΔrH°(0 K) = -52.76 ± 0.9 kcal/molRuscic W1RO
0.1734238.4 CCl3CCl3 (g) + 3 CH4 (g) → 3 CCl4 (g) + 2 CH3CH3 (g) ΔrH°(0 K) = 17.46 ± 1.50 kcal/molRuscic W1RO
0.1664235.2 CCl3CCl3 (cr,l) → CCl3CCl3 (g) ΔrH°(298.15 K) = 60.7 ± 4.2 (×1.542) kJ/molGurvich TPIS, Ivin 1947
0.1614281.5 CCl3CCl3 (g) → CCl2CCl2 (g) Cl2 (g) ΔrG°(671 K) = 15.9 ± 2.8 kJ/molDainton 1950, Weissman 1980, Manion 2002, 3rd Law
0.1404202.4 CH3CCl3 (g) → CCl3CCl3 (g) CH3CH3 (g) ΔrH°(0 K) = 13.43 ± 0.9 kcal/molRuscic W1RO
0.1374246.1 CCl3CCl2 (g) → CCl3CCl3 (g) CCl2CCl2 (g) ΔrH°(0 K) = -53.91 ± 1.1 kcal/molRuscic G3X
0.1234281.4 CCl3CCl3 (g) → CCl2CCl2 (g) Cl2 (g) ΔrG°(776 K) = 1.4 ± 3.2 kJ/molPuyo 1963, Manion 2002, 3rd Law
0.0984239.4 CCl3CCl3 (g) → 2 CCl3 (g) ΔrH°(0 K) = 68.74 ± 1.50 kcal/molRuscic W1RO
0.0984246.3 CCl3CCl2 (g) → CCl3CCl3 (g) CCl2CCl2 (g) ΔrH°(0 K) = -53.62 ± 1.3 kcal/molRuscic CBS-n
0.0864239.2 CCl3CCl3 (g) → 2 CCl3 (g) ΔrH°(0 K) = 70.87 ± 1.60 kcal/molRuscic G4
0.0734245.4 CCl3CCl2 (g) CCl4 (g) → CCl3 (g) CCl3CCl3 (g) ΔrH°(0 K) = -1.94 ± 1.2 kcal/molRuscic W1RO
0.0724286.1 CCl2CCl2 (g) Cl2 (g) → CCl3CCl3 (g) ΔrG°(776 K) = -0.32 ± 1.00 kcal/molPuyo 1963, note unc2
0.0624245.2 CCl3CCl2 (g) CCl4 (g) → CCl3 (g) CCl3CCl3 (g) ΔrH°(0 K) = -1.65 ± 1.3 kcal/molRuscic G4
0.0574237.1 CCl4 (g) → CCl3CCl3 (g) Cl2 (g) ΔrG°(696.6 K) = 42.8 ± 5.8 kJ/molHuybrechts 1996, Manion 2002, 3rd Law
0.0534245.1 CCl3CCl2 (g) CCl4 (g) → CCl3 (g) CCl3CCl3 (g) ΔrH°(0 K) = -2.79 ± 1.4 kcal/molRuscic G3X
0.0504286.5 CCl2CCl2 (g) Cl2 (g) → CCl3CCl3 (g) ΔrH°(0 K) = -29.52 ± 1.2 kcal/molRuscic W1RO
0.0344281.1 CCl3CCl3 (g) → CCl2CCl2 (g) Cl2 (g) ΔrG°(696.6 K) = 7.3 ± 5.8 (×1.044) kJ/molHuybrechts 1996, Manion 2002
0.0324202.2 CH3CCl3 (g) → CCl3CCl3 (g) CH3CH3 (g) ΔrH°(0 K) = 10.89 ± 1.0 (×1.874) kcal/molRuscic G4
0.0314243.4 CCl3CCl3 (g) → CCl3CCl2 (g) Cl (g) ΔrH°(0 K) = 68.74 ± 1.50 kcal/molRuscic W1RO


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122h of the Thermochemical Network (2020); available at ATcT.anl.gov
4   J. P. Porterfield, D. H. Bross, B. Ruscic, J. H. Thorpe, T. L. Nguyen, J. H. Baraban, J. F. Stanton, J. W. Daily, and G. B. Ellison,
Thermal Decomposition of Potential Ester Biofuels, Part I: Methyl Acetate and Methyl Butanoate.
J. Chem. Phys. A 121, 4658-4677 (2017) [DOI: 10.1021/acs.jpca.7b02639] (Veronica Vaida Festschrift)
5   Y.-C. Chang, B. Xiong, D. H. Bross, B. Ruscic, and C. Y. Ng,
A Vacuum Ultraviolet laser Pulsed Field Ionization-Photoion Study of Methane (CH4): Determination of the Appearance Energy of Methylium From Methane with Unprecedented Precision and the Resulting Impact on the Bond Dissociation Energies of CH4 and CH4+.
Phys. Chem. Chem. Phys. 19, 9592-9605 (2017) [DOI: 10.1039/c6cp08200a] (part of 2017 PCCP Hot Articles collection)
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.