Selected ATcT [1, 2] enthalpy of formation based on version 1.122h of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122e [4] to include results centered on the determination of the appearance energy of CH3+ from CH4. [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
FluorobenzeneC6H5F (g)c1ccc(cc1)F-99.08-114.76± 0.89kJ/mol96.1023 ±
0.0048
462-06-6*0

Representative Geometry of C6H5F (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of C6H5F (g)

The 16 contributors listed below account for 91.5% of the provenance of ΔfH° of C6H5F (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
49.75110.1 C6H5F (cr,l) + 7 O2 (g) → 6 CO2 (g) HF (aq, 60 H2O) + 2 H2O (cr,l) ΔrH°(298.15 K) = -741.88 ± 0.29 kcal/molGood 1956
4.95111.8 C6H5F (g) CH4 (g) → C6H6 (g) CH3F (g) ΔrH°(0 K) = 8.71 ± 0.9 kcal/molRuscic W1RO
4.05111.4 C6H5F (g) CH4 (g) → C6H6 (g) CH3F (g) ΔrH°(0 K) = 8.76 ± 1.0 kcal/molRuscic G4
4.05111.7 C6H5F (g) CH4 (g) → C6H6 (g) CH3F (g) ΔrH°(0 K) = 9.08 ± 1.0 kcal/molRuscic CBS-n
3.35111.3 C6H5F (g) CH4 (g) → C6H6 (g) CH3F (g) ΔrH°(0 K) = 9.37 ± 1.1 kcal/molRuscic G3X
2.85113.8 C6H5F (g) H (g) → C6H6 (g) F (g) ΔrH°(0 K) = 14.42 ± 1.2 kcal/molRuscic W1RO
2.85112.8 C6H5F (g) H2 (g) → C6H6 (g) HF (g) ΔrH°(0 K) = -18.03 ± 1.2 kcal/molRuscic W1RO
2.45113.7 C6H5F (g) H (g) → C6H6 (g) F (g) ΔrH°(0 K) = 14.50 ± 1.3 kcal/molRuscic CBS-n
2.45113.4 C6H5F (g) H (g) → C6H6 (g) F (g) ΔrH°(0 K) = 14.14 ± 1.3 kcal/molRuscic G4
2.45112.7 C6H5F (g) H2 (g) → C6H6 (g) HF (g) ΔrH°(0 K) = -17.06 ± 1.3 kcal/molRuscic CBS-n
2.45112.4 C6H5F (g) H2 (g) → C6H6 (g) HF (g) ΔrH°(0 K) = -17.72 ± 1.3 kcal/molRuscic G4
2.35111.6 C6H5F (g) CH4 (g) → C6H6 (g) CH3F (g) ΔrH°(0 K) = 9.02 ± 1.3 kcal/molRuscic CBS-n
2.15113.3 C6H5F (g) H (g) → C6H6 (g) F (g) ΔrH°(0 K) = 14.75 ± 1.4 kcal/molRuscic G3X
2.15112.3 C6H5F (g) H2 (g) → C6H6 (g) HF (g) ΔrH°(0 K) = -16.76 ± 1.4 kcal/molRuscic G3X
1.85102.8 C6H5F (g) → 6 C (g) + 5 H (g) F (g) ΔrH°(0 K) = 1321.68 ± 1.50 kcal/molRuscic W1RO
1.65102.4 C6H5F (g) → 6 C (g) + 5 H (g) F (g) ΔrH°(0 K) = 1319.65 ± 1.60 kcal/molRuscic G4

Top 10 species with enthalpies of formation correlated to the ΔfH° of C6H5F (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
99.9 Fluorobenzene cation[C6H5F]+ (g)c1ccc(cc1)[F+]788.90773.88± 0.89kJ/mol96.1018 ±
0.0048
34468-25-2*0
99.9 FluorobenzeneC6H5F (cr,l)c1ccc(cc1)F-151.80-149.38± 0.89kJ/mol96.1023 ±
0.0048
462-06-6*500
49.6 Fluorobenzene anion[C6H5F]- (g)c1ccc(cc1)[F-]-18.3-30.2± 1.8kJ/mol96.1029 ±
0.0048
34561-55-2*0
14.5 BenzeneC6H6 (g)c1ccccc1100.6283.10± 0.23kJ/mol78.1118 ±
0.0048
71-43-2*0
14.5 Benzene cation[C6H6]+ (g)c1ccc(cc1)[H+]992.50976.03± 0.23kJ/mol78.1113 ±
0.0048
34504-50-2*0
14.5 BenzeneC6H6 (cr,l)c1ccccc150.7149.16± 0.23kJ/mol78.1118 ±
0.0048
71-43-2*500
10.2 Hydrogen fluorideHF (aq, 60 H2O)F-321.17± 0.16kJ/mol20.006343 ±
0.000070
7664-39-3*823
10.2 Hydrogen fluorideHF (aq, 55.51 H2O)F-321.16± 0.16kJ/mol20.006343 ±
0.000070
7664-39-3*891
10.2 Hydrogen fluorideHF (aq, 50 H2O)F-321.15± 0.16kJ/mol20.006343 ±
0.000070
7664-39-3*822
10.2 Hydrogen fluorideHF (aq, 55 H2O)F-321.16± 0.16kJ/mol20.006343 ±
0.000070
7664-39-3*905

Most Influential reactions involving C6H5F (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.2755103.2 C6H5F (g) → [C6H5F]+ (g) ΔrH°(0 K) = 74229 ± 5 cm-1Lembach 1996
0.2755103.3 C6H5F (g) → [C6H5F]+ (g) ΔrH°(0 K) = 74230 ± 5 cm-1Gonohe 1984
0.2755103.1 C6H5F (g) → [C6H5F]+ (g) ΔrH°(0 K) = 74229 ± 5 cm-1Kwon 2002
0.2725108.4 C6H5F (cr,l) → C6H5F (g) ΔrH°(298.15 K) = 34.63 ± 0.07 kJ/molBasarova 1991, Boublik 1984
0.2445107.1 [C6H5F]- (g) C6H6 (g) → C6H5F (g) [C6H6]- (g) ΔrH°(0 K) = 0.31 ± 0.03 eVFrazier 1978, est unc
0.1905108.5 C6H5F (cr,l) → C6H5F (g) ΔrH°(298.15 K) = 8.278 ± 0.02 kcal/molScott 1956
0.1645108.1 C6H5F (cr,l) → C6H5F (g) ΔrH°(298.15 K) = 34.68 ± 0.09 kJ/molMajer 1985, Scott 1956
0.1605106.1 [C6H5F]- (g) → C6H5F (g) ΔrH°(0 K) = -0.82 ± 0.04 eVFrazier 1978
0.1545108.3 C6H5F (cr,l) → C6H5F (g) ΔrH°(298.15 K) = 34.677 ± 0.093 kJ/molThermoData 2004
0.1375107.2 [C6H5F]- (g) C6H6 (g) → C6H5F (g) [C6H6]- (g) ΔrH°(0 K) = 0.26 ± 0.04 eVJordan 1976, est unc
0.1085107.7 [C6H5F]- (g) C6H6 (g) → C6H5F (g) [C6H6]- (g) ΔrH°(0 K) = 0.275 ± 0.045 eVRuscic W1RO
0.1025106.7 [C6H5F]- (g) → C6H5F (g) ΔrH°(0 K) = -0.849 ± 0.050 eVRuscic W1RO
0.0905106.2 [C6H5F]- (g) → C6H5F (g) ΔrH°(0 K) = -0.89 ± 0.05 (×1.067) eVJordan 1976
0.0825103.4 C6H5F (g) → [C6H5F]+ (g) ΔrH°(0 K) = 74238 ± 4 (×2.278) cm-1Shinohara 1997
0.0725107.4 [C6H5F]- (g) C6H6 (g) → C6H5F (g) [C6H6]- (g) ΔrH°(0 K) = 0.306 ± 0.055 eVRuscic G4
0.0685103.5 C6H5F (g) → [C6H5F]+ (g) ΔrH°(0 K) = 74222 ± 10 cm-1Grebner 1996, est unc
0.0635109.4 C6H5F (cr,l) → C6H5F (g) ΔrG°(314.158 K) = 4.127 ± 0.145 kJ/molThermoData 2004, 3rd Law
0.0615107.3 [C6H5F]- (g) C6H6 (g) → C6H5F (g) [C6H6]- (g) ΔrH°(0 K) = 0.252 ± 0.060 eVRuscic G3X
0.0565111.8 C6H5F (g) CH4 (g) → C6H6 (g) CH3F (g) ΔrH°(0 K) = 8.71 ± 0.9 kcal/molRuscic W1RO
0.0545109.10 C6H5F (cr,l) → C6H5F (g) ΔrG°(296.09 K) = 5.885 ± 0.157 kJ/molYoung 1889, 3rd Law, ThermoData 2004


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122h of the Thermochemical Network (2020); available at ATcT.anl.gov
4   J. P. Porterfield, D. H. Bross, B. Ruscic, J. H. Thorpe, T. L. Nguyen, J. H. Baraban, J. F. Stanton, J. W. Daily, and G. B. Ellison,
Thermal Decomposition of Potential Ester Biofuels, Part I: Methyl Acetate and Methyl Butanoate.
J. Chem. Phys. A 121, 4658-4677 (2017) [DOI: 10.1021/acs.jpca.7b02639] (Veronica Vaida Festschrift)
5   Y.-C. Chang, B. Xiong, D. H. Bross, B. Ruscic, and C. Y. Ng,
A Vacuum Ultraviolet laser Pulsed Field Ionization-Photoion Study of Methane (CH4): Determination of the Appearance Energy of Methylium From Methane with Unprecedented Precision and the Resulting Impact on the Bond Dissociation Energies of CH4 and CH4+.
Phys. Chem. Chem. Phys. 19, 9592-9605 (2017) [DOI: 10.1039/c6cp08200a] (part of 2017 PCCP Hot Articles collection)
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.