Selected ATcT [1, 2] enthalpy of formation based on version 1.122h of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122e [4] to include results centered on the determination of the appearance energy of CH3+ from CH4. [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Methyl bromide cation[CH3Br]+ (g)C[Br+]996.24981.32± 0.18kJ/mol94.9380 ±
0.0013
12538-70-4*0

Representative Geometry of [CH3Br]+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [CH3Br]+ (g)

The 20 contributors listed below account only for 79.5% of the provenance of ΔfH° of [CH3Br]+ (g).
A total of 123 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
50.04360.1 CH3Br (g) → [CH3]+ (g) Br (g) ΔrH°(0 K) = 12.834 ± 0.002 eVSong 2001
7.3946.2 Br2 (cr,l) → Br2 (g) ΔrH°(298.15 K) = 7.386 ± 0.027 kcal/molHildenbrand 1958
6.04358.1 CH3Br (g) → [CH3Br]+ (g) ΔrH°(0 K) = 85024.6 ± 4 cm-1Urban 2002
4.71888.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
2.54344.1 CH3Cl (g) + 3/2 O2 (g) → CO2 (g) H2O (cr,l) HCl (aq, 600 H2O) ΔrH°(298.15 K) = -764.00 ± 0.50 (×1.576) kJ/molFletcher 1971
1.44379.1 CH3Br (l) H2 (g) → 2 CH4 (g) Br2 (cr,l) ΔrH°(298.15 K) = -6.60 ± 0.60 kcal/molAdams 1966, as quoted by Cox 1970
0.94347.10 CH3Cl (g) H (g) → CH4 (g) Cl (g) ΔrH°(0 K) = -7296 ± 100 cm-1Czako 2012
0.8994.1 Cl2 (g) + 2 Br- (aq) → Br2 (cr,l) + 2 Cl- (aq) ΔrH°(298.15 K) = -91.29 ± 0.40 (×1.957) kJ/molJohnson 1963, as quoted by CODATA Key Vals
0.7994.2 Cl2 (g) + 2 Br- (aq) → Br2 (cr,l) + 2 Cl- (aq) ΔrH°(298.15 K) = -91.29 ± 0.80 kJ/molSunner 1964, as quoted by CODATA Key Vals
0.74363.1 CH3Br (g) H2 (g) → CH4 (g) HBr (g) ΔrH°(523.15 K) = -18.062 ± 0.321 kcal/molFowell 1965
0.54362.3 CH3Br (g) HBr (g) → Br2 (g) CH4 (g) ΔrG°(712.2 K) = 35.8 ± 1.6 (×1.325) kJ/molFerguson 1973, 3rd Law
0.54340.4 CH3Cl (g) → C (g) + 3 H (g) Cl (g) ΔrH°(0 K) = 371.34 ± 0.4 kcal/molFeller 2008
0.54360.3 CH3Br (g) → [CH3]+ (g) Br (g) ΔrH°(0 K) = 12.82 ± 0.02 eVTraeger 1981, AE corr, note unc2
0.44375.4 CH3Br (g) → CBr4 (g) + 3 CH4 (g) ΔrH°(0 K) = 2.77 ± 1.0 (×1.242) kcal/molRuscic G4
0.44375.3 CH3Br (g) → CBr4 (g) + 3 CH4 (g) ΔrH°(0 K) = 2.69 ± 1.1 (×1.189) kcal/molRuscic G3X
0.44567.1 CH3Cl (g) → CHCl3 (g) + 2 CH4 (g) ΔrH°(0 K) = -2.71 ± 1.2 kcal/molRuscic G3B3
0.24536.6 CH4 (g) CH2Cl2 (g) → 2 CH3Cl (g) ΔrH°(0 K) = 0.80 ± 0.9 kcal/molRuscic W1RO
0.21887.4 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -890.61 ± 0.21 kJ/molDale 2002
0.24567.2 CH3Cl (g) → CHCl3 (g) + 2 CH4 (g) ΔrH°(0 K) = -3.16 ± 1.2 (×1.297) kcal/molRuscic G3
0.24536.4 CH4 (g) CH2Cl2 (g) → 2 CH3Cl (g) ΔrH°(0 K) = 1.37 ± 1.0 kcal/molRuscic G4

Top 10 species with enthalpies of formation correlated to the ΔfH° of [CH3Br]+ (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
96.6 BromomethaneCH3Br (g)CBr-20.88-36.28± 0.18kJ/mol94.9385 ±
0.0013
74-83-9*0
90.9 BromomethaneCH3Br (l)CBr-56.60-59.61± 0.19kJ/mol94.9385 ±
0.0013
74-83-9*590
68.2 ChloromethaneCH3Cl (g)CCl-74.61-82.54± 0.19kJ/mol50.4872 ±
0.0012
74-87-3*0
67.6 Chloromethane cation[CH3Cl]+ (g)C[Cl+]1014.671007.90± 0.20kJ/mol50.4867 ±
0.0012
12538-71-5*0
67.2 ChloromethaneCH3Cl (l)CCl-106.40-102.44± 0.20kJ/mol50.4872 ±
0.0012
74-87-3*590
27.9 DibromineBr2 (g)BrBr45.6730.88± 0.11kJ/mol159.8080 ±
0.0020
7726-95-6*0
27.9 Bromine atomBr (g, 2P1/2)[Br]161.998155.935± 0.056kJ/mol79.90400 ±
0.00100
10097-32-2*2
27.9 Bromine atomBr (g, 2P3/2)[Br]117.914111.851± 0.056kJ/mol79.90400 ±
0.00100
10097-32-2*1
27.9 Bromine atomBr (g)[Br]117.914111.851± 0.056kJ/mol79.90400 ±
0.00100
10097-32-2*0
27.9 BromideBr- (g)[Br-]-206.623-212.686± 0.056kJ/mol79.90455 ±
0.00100
24959-67-9*0

Most Influential reactions involving [CH3Br]+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9164358.1 CH3Br (g) → [CH3Br]+ (g) ΔrH°(0 K) = 85024.6 ± 4 cm-1Urban 2002
0.0364358.4 CH3Br (g) → [CH3Br]+ (g) ΔrH°(0 K) = 85020 ± 20 cm-1Price 1936, est unc
0.0364358.2 CH3Br (g) → [CH3Br]+ (g) ΔrH°(0 K) = 85017.0 ± 20 cm-1Baig 1982, est unc
0.0064358.5 CH3Br (g) → [CH3Br]+ (g) ΔrH°(0 K) = 10.543 ± 0.006 eVKarlsson 1977
0.0024358.6 CH3Br (g) → [CH3Br]+ (g) ΔrH°(0 K) = 10.54 ± 0.01 eVTsai 1975
0.0014358.7 CH3Br (g) → [CH3Br]+ (g) ΔrH°(0 K) = 10.528 ± 0.005 (×2.768) eVNicholson 1965


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122h of the Thermochemical Network (2020); available at ATcT.anl.gov
4   J. P. Porterfield, D. H. Bross, B. Ruscic, J. H. Thorpe, T. L. Nguyen, J. H. Baraban, J. F. Stanton, J. W. Daily, and G. B. Ellison,
Thermal Decomposition of Potential Ester Biofuels, Part I: Methyl Acetate and Methyl Butanoate.
J. Chem. Phys. A 121, 4658-4677 (2017) [DOI: 10.1021/acs.jpca.7b02639] (Veronica Vaida Festschrift)
5   Y.-C. Chang, B. Xiong, D. H. Bross, B. Ruscic, and C. Y. Ng,
A Vacuum Ultraviolet laser Pulsed Field Ionization-Photoion Study of Methane (CH4): Determination of the Appearance Energy of Methylium From Methane with Unprecedented Precision and the Resulting Impact on the Bond Dissociation Energies of CH4 and CH4+.
Phys. Chem. Chem. Phys. 19, 9592-9605 (2017) [DOI: 10.1039/c6cp08200a] (part of 2017 PCCP Hot Articles collection)
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.