Selected ATcT [1, 2] enthalpy of formation based on version 1.122h of the Thermochemical Network [3] This version of ATcT results was generated from an expansion of version 1.122e [4] to include results centered on the determination of the appearance energy of CH3+ from CH4. [5].
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Succinic acid | (CH2COOH)2 (cr,l) | | -918.55 | -940.28 | ± 0.13 | kJ/mol | 118.0880 ± 0.0034 | 110-15-6*500 |
|
Top contributors to the provenance of ΔfH° of (CH2COOH)2 (cr,l)The 20 contributors listed below account only for 70.4% of the provenance of ΔfH° of (CH2COOH)2 (cr,l). A total of 76 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 15.5 | 118.2 | 1/2 O2 (g) + H2 (g) → H2O (cr,l)  | ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/mol | Rossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930 | 7.8 | 5281.5 | (CH2COOH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -356.401 ± 0.045 kcal/mol | Vanderzee 1972b | 6.4 | 1764.7 | C (graphite) + O2 (g) → CO2 (g)  | ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/mol | Hawtin 1966, note CO2e | 4.1 | 5282.4 | (CH2COOH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -356.392 ± 0.062 kcal/mol | Good 1968, Vanderzee 1972b | 4.1 | 5281.2 | (CH2COOH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -356.436 ± 0.062 kcal/mol | Zaikin 1970, Vanderzee 1972b | 3.8 | 5281.4 | (CH2COOH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -356.431 ± 0.064 kcal/mol | Vanderzee 1972b | 3.7 | 5279.7 | (CH2COOH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -356.397 ± 0.065 kcal/mol | Pilcher 1955, Vanderzee 1972b | 2.5 | 1764.5 | C (graphite) + O2 (g) → CO2 (g)  | ΔrH°(298.15 K) = -393.468 ± 0.038 kJ/mol | Fraser 1952, note CO2f | 2.5 | 1764.4 | C (graphite) + O2 (g) → CO2 (g)  | ΔrH°(298.15 K) = -393.462 ± 0.038 kJ/mol | Lewis 1965, note CO2d | 2.5 | 5280.4 | (CH2COOH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -356.306 ± 0.062 (×1.269) kcal/mol | Good 1959, as quoted by Cox 1970 | 2.5 | 5282.6 | (CH2COOH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -356.306 ± 0.062 (×1.269) kcal/mol | Wong 1971, Vanderzee 1972b | 2.3 | 5279.2 | (CH2COOH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -356.385 ± 0.082 kcal/mol | Huffman 1938, Vanderzee 1972b | 2.2 | 1888.1 | 2 H2 (g) + C (graphite) → CH4 (g)  | ΔrG°(1165 K) = 37.521 ± 0.068 kJ/mol | Smith 1946, note COf, 3rd Law | 1.7 | 1764.9 | C (graphite) + O2 (g) → CO2 (g)  | ΔrH°(298.15 K) = -94.051 ± 0.011 kcal/mol | Prosen 1944a, Cox 1970, NBS TN270, NBS Tables 1989 | 1.6 | 1887.4 | CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -890.61 ± 0.21 kJ/mol | Dale 2002 | 1.5 | 5282.5 | (CH2COOH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -356.353 ± 0.102 kcal/mol | Ducros 1969, Ducros 1970, Vanderzee 1972b | 1.5 | 5278.8 | (CH2COOH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -356.373 ± 0.102 kcal/mol | Roth 1937a, Vanderzee 1972b | 1.1 | 1764.6 | C (graphite) + O2 (g) → CO2 (g)  | ΔrH°(298.15 K) = -393.462 ± 0.056 kJ/mol | Hawtin 1966, note CO2e | 1.1 | 1887.6 | CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l)  | ΔrH°(298.15 K) = -890.44 ± 0.26 kJ/mol | GOMB Ref Calorimeter, Alexandrov 2002 | 1.0 | 5278.6 | (CH2COOH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -356.34 ± 0.12 kcal/mol | Keffler 1934, Vanderzee 1972b |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of (CH2COOH)2 (cr,l) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 60.4 | Water | H2O (cr,l) | | -286.302 | -285.830 | ± 0.027 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*500 | 60.4 | Water | H2O (g, ortho) | | -238.648 | -241.836 | ± 0.027 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*1 | 60.4 | Water | H2O (g, para) | | -238.932 | -241.836 | ± 0.027 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*2 | 60.4 | Water | H2O (g) | | -238.932 | -241.836 | ± 0.027 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*0 | 60.4 | Water | H2O (cr, l, eq.press.) | | -286.304 | -285.832 | ± 0.027 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*499 | 60.4 | Water | H2O (l, eq.press.) | | | -285.832 | ± 0.027 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*589 | 60.4 | Water | H2O (l) | | | -285.830 | ± 0.027 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*590 | 60.4 | Oxonium | [H3O]+ (aq) | | | -285.830 | ± 0.027 | kJ/mol | 19.02267 ± 0.00037 | 13968-08-6*800 | 60.4 | Water | H2O (cr) | | -286.302 | -292.743 | ± 0.027 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*510 | 60.4 | Water | H2O (cr, eq.press.) | | -286.304 | -292.745 | ± 0.027 | kJ/mol | 18.01528 ± 0.00033 | 7732-18-5*509 |
|
Most Influential reactions involving (CH2COOH)2 (cr,l)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.345 | 5283.4 | (CH2COOH)2 (cr,l) → (CH2COOH)2 (g)  | ΔrH°(367.64 K) = 120.5 ± 1.0 kJ/mol | de Wit 1983a, as quoted by NIST WebBook, est unc | 0.345 | 5283.5 | (CH2COOH)2 (cr,l) → (CH2COOH)2 (g)  | ΔrH°(298.15 K) = 123.1 ± 1.0 kJ/mol | de Wit 1983a, as quoted by NIST WebBook, est unc | 0.184 | 5281.5 | (CH2COOH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -356.401 ± 0.045 kcal/mol | Vanderzee 1972b | 0.123 | 5283.2 | (CH2COOH)2 (cr,l) → (CH2COOH)2 (g)  | ΔrG°(385 K) = 8.34 ± 0.40 kcal/mol | Davies 1960, 3rd Law, note unc5 | 0.117 | 5283.3 | (CH2COOH)2 (cr,l) → (CH2COOH)2 (g)  | ΔrH°(360 K) = 28.90 ± 0.41 kcal/mol | Roux 1974, as quoted by NIST WebBook | 0.097 | 5282.4 | (CH2COOH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -356.392 ± 0.062 kcal/mol | Good 1968, Vanderzee 1972b | 0.097 | 5281.2 | (CH2COOH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -356.436 ± 0.062 kcal/mol | Zaikin 1970, Vanderzee 1972b | 0.091 | 5281.4 | (CH2COOH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -356.431 ± 0.064 kcal/mol | Vanderzee 1972b | 0.088 | 5279.7 | (CH2COOH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -356.397 ± 0.065 kcal/mol | Pilcher 1955, Vanderzee 1972b | 0.060 | 5280.4 | (CH2COOH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -356.306 ± 0.062 (×1.269) kcal/mol | Good 1959, as quoted by Cox 1970 | 0.060 | 5282.6 | (CH2COOH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -356.306 ± 0.062 (×1.269) kcal/mol | Wong 1971, Vanderzee 1972b | 0.055 | 5279.2 | (CH2COOH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -356.385 ± 0.082 kcal/mol | Huffman 1938, Vanderzee 1972b | 0.038 | 5283.6 | (CH2COOH)2 (cr,l) → (CH2COOH)2 (g)  | ΔrH°(386 K) = 117.6 ± 3.0 kJ/mol | Mansson 1969, de Wit 1983a, est unc | 0.035 | 5278.8 | (CH2COOH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -356.373 ± 0.102 kcal/mol | Roth 1937a, Vanderzee 1972b | 0.035 | 5282.5 | (CH2COOH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -356.353 ± 0.102 kcal/mol | Ducros 1969, Ducros 1970, Vanderzee 1972b | 0.030 | 5283.1 | (CH2COOH)2 (cr,l) → (CH2COOH)2 (g)  | ΔrH°(385 K) = 28.06 ± 0.80 kcal/mol | Davies 1960, 2nd Law | 0.026 | 5280.6 | (CH2COOH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -356.34 ± 0.12 kcal/mol | Bills 1964, Vanderzee 1972b | 0.026 | 5278.6 | (CH2COOH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -356.34 ± 0.12 kcal/mol | Keffler 1934, Vanderzee 1972b | 0.026 | 5279.5 | (CH2COOH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -356.33 ± 0.12 kcal/mol | Cass 1955, Vanderzee 1972b | 0.026 | 5278.4 | (CH2COOH)2 (cr,l) + 7/2 O2 (g) → 4 CO2 (g) + 3 H2O (cr,l)  | ΔrH°(298.15 K) = -356.42 ± 0.12 kcal/mol | Beckers 1931, Vanderzee 1972b |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122h of the Thermochemical Network (2020); available at ATcT.anl.gov |
4
|
|
J. P. Porterfield, D. H. Bross, B. Ruscic, J. H. Thorpe, T. L. Nguyen, J. H. Baraban, J. F. Stanton, J. W. Daily, and G. B. Ellison,
Thermal Decomposition of Potential Ester Biofuels, Part I: Methyl Acetate and Methyl Butanoate.
J. Chem. Phys. A 121, 4658-4677 (2017)
[DOI: 10.1021/acs.jpca.7b02639] (Veronica Vaida Festschrift)
|
5
|
|
Y.-C. Chang, B. Xiong, D. H. Bross, B. Ruscic, and C. Y. Ng,
A Vacuum Ultraviolet laser Pulsed Field Ionization-Photoion Study of Methane (CH4): Determination of the Appearance Energy of Methylium From Methane with Unprecedented Precision and the Resulting Impact on the Bond Dissociation Energies of CH4 and CH4+.
Phys. Chem. Chem. Phys. 19, 9592-9605 (2017)
[DOI: 10.1039/c6cp08200a] (part of 2017 PCCP Hot Articles collection)
|
6
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|