Selected ATcT [1, 2] enthalpy of formation based on version 1.122g of the Thermochemical Network [3]This version of ATcT results was generated from an expansion of version 1.122e [4] to include results centered on the determination of the appearance energy of CH3+ from CH4. [5]. |
|||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||
Representative Geometry of [O]-2 (g) | |||||||||||||||||||||||||||||||||||
spin ON spin OFF | |||||||||||||||||||||||||||||||||||
Top contributors to the provenance of ΔfH° of [O]-2 (g)The 6 contributors listed below account for 96.7% of the provenance of ΔfH° of [O]-2 (g).Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network. | |||||||||||||||||||||||||||||||||||
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference |
---|---|---|---|---|
0.368 | 31.4 | [O]-2 (g) → O- (g)  | ΔrH°(0 K) = -5.660 ± 0.25 eV | Ruscic G4, est unc |
0.177 | 31.6 | [O]-2 (g) → O- (g)  | ΔrH°(0 K) = -5.421 ± 0.36 eV | Ruscic CBS-n, est unc |
0.144 | 31.7 | [O]-2 (g) → O- (g)  | ΔrH°(0 K) = -6.043 ± 0.20 (×2) eV | Ruscic W1RO, est unc |
0.092 | 31.2 | [O]-2 (g) → O- (g)  | ΔrH°(0 K) = -5.31 ± 0.5 eV | Edlen 1960, Herrick 1975 |
0.092 | 31.1 | [O]-2 (g) → O- (g)  | ΔrH°(0 K) = -5.38 ± 0.5 eV | Herrick 1975 |
0.092 | 31.8 | [O]-2 (g) → O- (g)  | ΔrH°(0 K) = -5.65 ± 0.5 eV | Sommerfeld 2000, est unc |
0.023 | 31.3 | [O]-2 (g) → O- (g)  | ΔrH°(0 K) = -6.53 ± 1 eV | Kaufman 1963, Herrick 1975 |
0.009 | 31.5 | [O]-2 (g) → O- (g)  | ΔrH°(0 K) = -7.154 ± 0.40 (×3.83) eV | Ruscic CBS-n, est unc |
1 |
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner, Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited. J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y] |
|
2 |
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner, Active Thermochemical Tables: Thermochemistry for the 21st Century. J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078] |
|
3 |
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122g of the Thermochemical Network (2019); available at ATcT.anl.gov |
|
4 |
J. P. Porterfield, D. H. Bross, B. Ruscic, J. H. Thorpe, T. L. Nguyen, J. H. Baraban, J. F. Stanton, J. W. Daily, and G. B. Ellison, Thermal Decomposition of Potential Ester Biofuels, Part I: Methyl Acetate and Methyl Butanoate. J. Chem. Phys. A 121, 4658-4677 (2017) [DOI: 10.1021/acs.jpca.7b02639] (Veronica Vaida Festschrift) |
|
5 |
Y.-C. Chang, B. Xiong, D. H. Bross, B. Ruscic, and C. Y. Ng, A Vacuum Ultraviolet laser Pulsed Field Ionization-Photoion Study of Methane (CH4): Determination of the Appearance Energy of Methylium From Methane with Unprecedented Precision and the Resulting Impact on the Bond Dissociation Energies of CH4 and CH4+. Phys. Chem. Chem. Phys. 19, 9592-9605 (2017) [DOI: 10.1039/c6cp08200a] (part of 2017 PCCP Hot Articles collection) |
|
6 |
B. Ruscic, Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables. Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605] |