Selected ATcT [1, 2] enthalpy of formation based on version 1.122e of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122d [4] to include chemical species related to methyl acetate and methyl formate [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Carbide[C2]- (g)[C]=[C-]504.70511.27± 0.39kJ/mol24.0219 ±
0.0016
12595-78-7*0

Representative Geometry of [C2]- (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [C2]- (g)

The 20 contributors listed below account only for 84.7% of the provenance of ΔfH° of [C2]- (g).
A total of 38 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
31.71827.1 [C2]- (g) → C2 (g) ΔrH°(0 K) = 3.272 ± 0.004 eVFeller 2016, note unc2
14.11826.2 [C2]- (g) → C2 (g) ΔrH°(0 K) = 3.269 ± 0.006 eVErvin 1991
7.91826.1 [C2]- (g) → C2 (g) ΔrH°(0 K) = 3.273 ± 0.008 eVArnold 1991
5.71823.10 C2 (g) → 2 C (g) ΔrH°(0 K) = 144.07 ± 0.15 kcal/molKarton 2007a, Karton 2008, Karton 2009
5.31837.7 HCCH (g) → 2 H (g) C2 (g) ΔrH°(0 K) = 244.65 ± 0.15 kcal/molKarton 2007a
3.51824.10 C2 (g) → 2 C (g) ΔrH°(0 K) = 144.19 ± 0.19 kcal/molFeller 2014
2.01823.9 C2 (g) → 2 C (g) ΔrH°(0 K) = 144.08 ± 0.25 kcal/molKarton 2007a, Karton 2009
1.41824.9 C2 (g) → 2 C (g) ΔrH°(0 K) = 143.89 ± 0.3 kcal/molFeller 2008
1.41823.8 C2 (g) → 2 C (g) ΔrH°(0 K) = 144.05 ± 0.30 kcal/molKarton 2009, Karton 2007a
1.41823.7 C2 (g) → 2 C (g) ΔrH°(0 K) = 143.88 ± 0.30 kcal/molKarton 2009, Karton 2007a, Karton 2011
1.31822.8 C2 (g) → 2 C (g) ΔrH°(0 K) = 143.7 ± 0.3 (×1.022) kcal/molFeller 2007
1.31837.8 HCCH (g) → 2 H (g) C2 (g) ΔrH°(0 K) = 244.62 ± 0.3 kcal/molFeller 2008
1.31837.6 HCCH (g) → 2 H (g) C2 (g) ΔrH°(0 K) = 244.69 ± 0.30 kcal/molKarton 2006, Karton 2007a
1.31837.5 HCCH (g) → 2 H (g) C2 (g) ΔrH°(0 K) = 244.86 ± 0.30 kcal/molKarton 2006, Karton 2007a
1.22138.5 CCH (g) → C2 (g) H (g) ΔrH°(0 K) = 113.22 ± 0.30 (×1.022) kcal/molKarton 2011
0.81823.6 C2 (g) → 2 C (g) ΔrH°(0 K) = 143.93 ± 0.40 kcal/molKarton 2009, Karton 2007a, Karton 2011
0.71837.4 HCCH (g) → 2 H (g) C2 (g) ΔrH°(0 K) = 244.69 ± 0.40 kcal/molKarton 2006, Karton 2007a
0.72138.4 CCH (g) → C2 (g) H (g) ΔrH°(0 K) = 112.99 ± 0.40 kcal/molKarton 2011
0.52138.7 CCH (g) → C2 (g) H (g) ΔrH°(0 K) = 471.84 ± 2 kJ/molAguilera-Iparraguirre 2008, est unc
0.42275.1 CN (g) → N2 (g) C2 (g) ΔrH°(0 K) = -12.78 ± 0.50 kcal/molFeller 2014

Top 10 species with enthalpies of formation correlated to the ΔfH° of [C2]- (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
66.1 EthynyleneC2 (g)[C]=[C]820.28828.75± 0.26kJ/mol24.0214 ±
0.0016
12070-15-4*0
66.1 EthynyleneC2 (g, singlet)[C]=[C]820.28826.86± 0.26kJ/mol24.0214 ±
0.0016
12070-15-4*2
66.1 EthynyleneC2 (g, triplet)[C]=[C]827.51834.21± 0.26kJ/mol24.0214 ±
0.0016
12070-15-4*1
34.1 Ethynylene cation[C2]+ (g)[C]=[C+]1965.201971.78± 0.50kJ/mol24.0209 ±
0.0016
12595-79-8*0
22.7 Carbon atom cationC+ (g)[C+]1797.8531803.451± 0.048kJ/mol12.01015 ±
0.00080
14067-05-1*0
22.7 Carbon atomC (g, singlet)[C]833.332838.478± 0.048kJ/mol12.01070 ±
0.00080
7440-44-0*2
22.7 Carbon atomC (g, quintuplet)[C]1114.9631120.110± 0.048kJ/mol12.01070 ±
0.00080
7440-44-0*3
22.7 Carbon atomC (g, triplet)[C]711.401716.886± 0.048kJ/mol12.01070 ±
0.00080
7440-44-0*1
22.7 Carbon atomC (g)[C]711.401716.886± 0.048kJ/mol12.01070 ±
0.00080
7440-44-0*0
22.6 Carbon atom anionC- (g)[C-]589.624594.770± 0.048kJ/mol12.01125 ±
0.00080
14337-00-9*0

Most Influential reactions involving [C2]- (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.5731827.1 [C2]- (g) → C2 (g) ΔrH°(0 K) = 3.272 ± 0.004 eVFeller 2016, note unc2
0.2541826.2 [C2]- (g) → C2 (g) ΔrH°(0 K) = 3.269 ± 0.006 eVErvin 1991
0.1431826.1 [C2]- (g) → C2 (g) ΔrH°(0 K) = 3.273 ± 0.008 eVArnold 1991
0.0051827.2 [C2]- (g) → C2 (g) ΔrH°(0 K) = 3.264 ± 0.043 eVLu 2004
0.0031826.13 [C2]- (g) → C2 (g) ΔrH°(0 K) = 3.261 ± 0.050 eVRuscic W1RO
0.0031829.8 [C2]- (g) → 2 C (g) ΔrH°(0 K) = 218.61 ± 1.50 kcal/molRuscic W1RO
0.0031829.7 [C2]- (g) → 2 C (g) ΔrH°(0 K) = 218.42 ± 1.60 kcal/molRuscic CBS-n
0.0031829.4 [C2]- (g) → 2 C (g) ΔrH°(0 K) = 220.26 ± 1.60 kcal/molRuscic G4
0.0031831.1 [C2]- (g) → C (g) C- (g) ΔrH°(0 K) = 188.7 ± 1.5 (×1.091) kcal/molSordo 2001, Chan 2004
0.0021829.3 [C2]- (g) → 2 C (g) ΔrH°(0 K) = 219.94 ± 1.72 kcal/molRuscic G3X
0.0021827.3 [C2]- (g) → C2 (g) ΔrH°(0 K) = 3.29 ± 0.06 eVSordo 2001, est unc, Huber 1979
0.0011829.6 [C2]- (g) → 2 C (g) ΔrH°(0 K) = 217.62 ± 2.16 kcal/molRuscic CBS-n
0.0011826.12 [C2]- (g) → C2 (g) ΔrH°(0 K) = 3.214 ± 0.090 eVRuscic CBS-n
0.0011826.11 [C2]- (g) → C2 (g) ΔrH°(0 K) = 3.180 ± 0.092 eVRuscic CBS-n
0.0011826.9 [C2]- (g) → C2 (g) ΔrH°(0 K) = 3.176 ± 0.061 (×1.576) eVRuscic G4
0.0001826.4 [C2]- (g) → C2 (g) ΔrH°(0 K) = 3.30 ± 0.10 eVYang 1989
0.0002146.1 [C2]- (g) H2O (g) → [CCH]- (g) OH (g) ΔrH°(0 K) = 0.61 ± 0.15 eVShi 2008
0.0001826.8 [C2]- (g) → C2 (g) ΔrH°(0 K) = 3.154 ± 0.085 (×1.384) eVRuscic G3X
0.0001826.3 [C2]- (g) → C2 (g) ΔrH°(0 K) = 3.391 ± 0.017 (×7.179) eVJones 1980
0.0001827.5 [C2]- (g) → C2 (g) ΔrH°(0 K) = 3.18 ± 0.15 eVFura 2002


References (for your convenience, also available in RIS and BibTex format)
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122e of the Thermochemical Network, Argonne National Laboratory (2019); available at ATcT.anl.gov
4   L. Cheng, J. Gauss, B. Ruscic, P. Armentrout, and J. Stanton,
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for Twenty Molecules.
J. Chem. Theory Comput. 13, 1044-1056 (2017) [DOI: 10.1021/acs.jctc.6b00970]
5   J. P. Porterfield, D. H. Bross, B. Ruscic, J. H. Thorpe, T. L. Nguyen, J. H. Baraban, J. F. Stanton, J. W. Daily, and G. B. Ellison,
Thermal Decomposition of Potential Ester Biofuels, Part I: Methyl Acetate and Methyl Butanoate.
J. Chem. Phys. A 121, 4658-4677 (2017) [DOI: 10.1021/acs.jpca.7b02639] (Veronica Vaida Festschrift)
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.