Selected ATcT [1, 2] enthalpy of formation based on version 1.122e of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122d [4] to include chemical species related to methyl acetate and methyl formate [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Phenide[C6H5]- (g)c1cccc[c-]1244.38230.95± 0.39kJ/mol77.1044 ±
0.0048
30922-78-2*0

Representative Geometry of [C6H5]- (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [C6H5]- (g)

The 20 contributors listed below account only for 76.3% of the provenance of ΔfH° of [C6H5]- (g).
A total of 80 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
14.31397.1 [NH2]- (g) → NH2 (g) ΔrH°(0 K) = 0.771 ± 0.005 eVWickham-Jones 1989
9.91398.11 [NH2]- (g) → NH2 (g) ΔrH°(0 K) = 0.773 ± 0.006 eVFeller 2016, note unc2
9.54897.1 C6H6 (g) [NH2]- (g) → [C6H5]- (g) NH3 (g) ΔrG°(300 K) = -3.557 ± 0.047 kcal/molDavico 1995
6.04879.3 C6H6 (cr,l) + 15/2 O2 (g) → 6 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -780.97 ± 0.09 kcal/molCoops 1947, Coops 1946
4.84879.1 C6H6 (cr,l) + 15/2 O2 (g) → 6 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -780.98 ± 0.10 kcal/molProsen 1945a, as quoted by Cox 1970
4.84879.4 C6H6 (cr,l) + 15/2 O2 (g) → 6 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -780.92 ± 0.10 kcal/molGood 1969
3.74882.1 [C6H5]- (g) → C6H5 (g) ΔrH°(0 K) = 1.096 ± 0.006 eVGunion 1992
3.51397.4 [NH2]- (g) → NH2 (g) ΔrH°(0 K) = 0.768 ± 0.010 eVRadisic 2002
3.34879.2 C6H6 (cr,l) + 15/2 O2 (g) → 6 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -780.96 ± 0.12 kcal/molCox 1970
3.11404.4 [NH2]- (g) H2 (g) → H- (g) NH3 (g) ΔrG°(296 K) = -1.916 ± 0.272 kcal/molBohme 1973, MacKay 1976, note unc2
2.04897.3 C6H6 (g) [NH2]- (g) → [C6H5]- (g) NH3 (g) ΔrG°(300 K) = -3.618 ± 0.101 kcal/molDavico 1995
1.6118.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
1.41764.7 C (graphite) O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/molHawtin 1966, note CO2e
1.41404.2 [NH2]- (g) H2 (g) → H- (g) NH3 (g) ΔrG°(297 K) = -1.945 ± 0.400 kcal/molBohme 1973, note unc2
1.34897.2 C6H6 (g) [NH2]- (g) → [C6H5]- (g) NH3 (g) ΔrG°(300 K) = -3.557 ± 0.125 kcal/molDavico 1995
1.22176.1 CH3NH2 (g) [NH2]- (g) → [CH3NH]- (g) NH3 (g) ΔrG°(296 K) = -0.51 ± 0.20 kcal/molMacKay 1976, note unc2
1.11406.1 NH3 (g) → [NH2]+ (g) H (g) ΔrH°(0 K) = 15.765 ± 0.002 eVSong 2001a, note unc2
0.84880.10 C6H5 (g) → 6 C (g) + 5 H (g) ΔrH°(0 K) = 1195.15 ± 0.60 kcal/molKarton 2009a
0.72177.1 [CH3NH]- (g) H2 (g) → H- (g) CH3NH2 (g) ΔrG°(296 K) = -1.46 ± 0.29 kcal/molMacKay 1976, note unc2
0.71398.10 [NH2]- (g) → NH2 (g) ΔrH°(0 K) = 0.770 ± 0.022 eVBoese 2004

Top 10 species with enthalpies of formation correlated to the ΔfH° of [C6H5]- (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
69.8 Azanide[NH2]- (g)[NH2-]114.78111.91± 0.30kJ/mol16.02317 ±
0.00016
17655-31-1*0
55.4 BenzeneC6H6 (g)c1ccccc1100.6283.11± 0.23kJ/mol78.1118 ±
0.0048
71-43-2*0
55.4 Benzene cation[C6H6]+ (g)c1ccc(cc1)[H+]992.50976.04± 0.23kJ/mol78.1113 ±
0.0048
34504-50-2*0
55.4 BenzeneC6H6 (cr,l)c1ccccc150.7149.17± 0.23kJ/mol78.1118 ±
0.0048
71-43-2*500
52.0 PhenylC6H5 (g)c1cccc[c]1350.24336.89± 0.54kJ/mol77.1039 ±
0.0048
2396-01-2*0
21.7 Succinic acid(CH2COOH)2 (cr,l)OC(=O)CCC(=O)O-918.55-940.28± 0.13kJ/mol118.0880 ±
0.0034
110-15-6*500
20.5 Carbon dioxideCO2 (g)C(=O)=O-393.108-393.474± 0.015kJ/mol44.00950 ±
0.00100
124-38-9*0
19.5 WaterH2O (cr,l)O-286.301-285.829± 0.027kJ/mol18.01528 ±
0.00033
7732-18-5*500
19.5 WaterH2O (l)O-285.829± 0.027kJ/mol18.01528 ±
0.00033
7732-18-5*590
19.5 Oxonium[H3O]+ (aq)[OH3+]-285.829± 0.027kJ/mol19.02267 ±
0.00037
13968-08-6*800

Most Influential reactions involving [C6H5]- (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.7104897.1 C6H6 (g) [NH2]- (g) → [C6H5]- (g) NH3 (g) ΔrG°(300 K) = -3.557 ± 0.047 kcal/molDavico 1995
0.6564882.1 [C6H5]- (g) → C6H5 (g) ΔrH°(0 K) = 1.096 ± 0.006 eVGunion 1992
0.1534897.3 C6H6 (g) [NH2]- (g) → [C6H5]- (g) NH3 (g) ΔrG°(300 K) = -3.618 ± 0.101 kcal/molDavico 1995
0.1004897.2 C6H6 (g) [NH2]- (g) → [C6H5]- (g) NH3 (g) ΔrG°(300 K) = -3.557 ± 0.125 kcal/molDavico 1995
0.0284900.2 C6H6 (g) [CH2CH]- (g) → [C6H5]- (g) CH2CH2 (g) ΔrH°(0 K) = -8.21 ± 1.2 kcal/molRuscic G3
0.0234900.4 C6H6 (g) [CH2CH]- (g) → [C6H5]- (g) CH2CH2 (g) ΔrH°(0 K) = -8.32 ± 1.3 kcal/molRuscic CBS-n
0.0204885.7 [C6H5]- (g) → [C6H5]+ (g) ΔrH°(0 K) = 9.380 ± 0.065 eVRuscic W1RO
0.0094882.10 [C6H5]- (g) → C6H5 (g) ΔrH°(0 K) = 1.113 ± 0.050 eVRuscic W1RO
0.0094885.4 [C6H5]- (g) → [C6H5]+ (g) ΔrH°(0 K) = 9.429 ± 0.095 eVRuscic G4
0.0084898.1 C6H6 (g) [OH]- (g) → [C6H5]- (g) H2O (g) ΔrH°(600 K) = 9.9 ± 0.6 (×1.384) kcal/molMeot-Ner 1986, Meot-Ner 1988, note std dev
0.0074900.5 C6H6 (g) [CH2CH]- (g) → [C6H5]- (g) CH2CH2 (g) ΔrH°(298.15 K) = -42 ± 10 kJ/molNicolaides 1997
0.0064885.6 [C6H5]- (g) → [C6H5]+ (g) ΔrH°(0 K) = 9.401 ± 0.115 eVRuscic CBS-n
0.0054885.3 [C6H5]- (g) → [C6H5]+ (g) ΔrH°(0 K) = 9.411 ± 0.126 eVRuscic G3X
0.0054884.8 [C6H5]- (g) → 6 C (g) + 5 H (g) ΔrH°(0 K) = 1221.33 ± 1.50 kcal/molRuscic W1RO
0.0044885.5 [C6H5]- (g) → [C6H5]+ (g) ΔrH°(0 K) = 9.417 ± 0.135 eVRuscic CBS-n
0.0044899.1 C6H5 (g) [ONO]- (g) → [C6H5]- (g) ONO (g) ΔrH°(0 K) = 1.1 ± 0.1 eVHacaloglu 1993
0.0044884.4 [C6H5]- (g) → 6 C (g) + 5 H (g) ΔrH°(0 K) = 1221.01 ± 1.60 kcal/molRuscic G4
0.0034884.3 [C6H5]- (g) → 6 C (g) + 5 H (g) ΔrH°(0 K) = 1220.21 ± 1.72 kcal/molRuscic G3X
0.0024884.6 [C6H5]- (g) → 6 C (g) + 5 H (g) ΔrH°(0 K) = 1218.96 ± 2.16 kcal/molRuscic CBS-n
0.0014884.7 [C6H5]- (g) → 6 C (g) + 5 H (g) ΔrH°(0 K) = 1222.35 ± 1.60 (×1.542) kcal/molRuscic CBS-n


References (for your convenience, also available in RIS and BibTex format)
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122e of the Thermochemical Network, Argonne National Laboratory (2019); available at ATcT.anl.gov
4   L. Cheng, J. Gauss, B. Ruscic, P. Armentrout, and J. Stanton,
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for Twenty Molecules.
J. Chem. Theory Comput. 13, 1044-1056 (2017) [DOI: 10.1021/acs.jctc.6b00970]
5   J. P. Porterfield, D. H. Bross, B. Ruscic, J. H. Thorpe, T. L. Nguyen, J. H. Baraban, J. F. Stanton, J. W. Daily, and G. B. Ellison,
Thermal Decomposition of Potential Ester Biofuels, Part I: Methyl Acetate and Methyl Butanoate.
J. Chem. Phys. A 121, 4658-4677 (2017) [DOI: 10.1021/acs.jpca.7b02639] (Veronica Vaida Festschrift)
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.