Selected ATcT [1, 2] enthalpy of formation based on version 1.122e of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122d [4] to include chemical species related to methyl acetate and methyl formate [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
CyanogenNCCN (g)N#CC#N308.31310.26± 0.43kJ/mol52.0349 ±
0.0016
460-19-5*0

Representative Geometry of NCCN (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of NCCN (g)

The 20 contributors listed below account only for 80.7% of the provenance of ΔfH° of NCCN (g).
A total of 54 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
10.43932.12 NCCN (g) → 2 N (g) + 2 C (g) ΔrH°(0 K) = 491.50 ± 0.30 kcal/molKarton 2008
8.92251.12 HCN (g) → NCCN (g) H2 (g) ΔrH°(0 K) = 11.51 ± 0.30 kcal/molMartin 2006, Karton 2006
6.52251.11 HCN (g) → NCCN (g) H2 (g) ΔrH°(0 K) = 11.62 ± 0.35 kcal/molMartin 2006, Karton 2006
5.83932.11 NCCN (g) → 2 N (g) + 2 C (g) ΔrH°(0 K) = 491.17 ± 0.40 kcal/molMartin 2006
5.53937.2 NCCN (g) + 2 O2 (g) → 2 CO2 (g) N2 (g) ΔrH°(298.15 K) = -1095.97 ± 1.80 kJ/molKnowlton 1951
5.02251.10 HCN (g) → NCCN (g) H2 (g) ΔrH°(0 K) = 11.76 ± 0.4 kcal/molMartin 2006, Karton 2006
5.02252.11 HCN (g) → NCCN (g) + 2 H (g) ΔrH°(0 K) = 114.91 ± 0.40 kcal/molMartin 2006, Karton 2006
4.62300.1 NCCN (g) → 2 CN (g) ΔrH°(0 K) = 47108 ± 50 (×2.709) cm-1Huang 1992
4.32301.3 NCCN (g) → 2 CN (g) ΔrH°(0 K) = 134.76 ± 0.40 kcal/molMartin 2006
4.32301.4 NCCN (g) → 2 CN (g) ΔrH°(0 K) = 134.96 ± 0.40 kcal/molMartin 2006
3.92252.12 HCN (g) → NCCN (g) + 2 H (g) ΔrH°(0 K) = 114.80 ± 0.45 kcal/molMartin 2006, Karton 2006
2.93932.10 NCCN (g) → 2 N (g) + 2 C (g) ΔrH°(0 K) = 491.12 ± 0.56 kcal/molMartin 2006
2.63932.14 NCCN (g) → 2 N (g) + 2 C (g) ΔrH°(0 K) = 491.36 ± 0.6 kcal/molFeller 2008
2.52252.10 HCN (g) → NCCN (g) + 2 H (g) ΔrH°(0 K) = 115.04 ± 0.56 kcal/molMartin 2006, Karton 2006
2.12301.2 NCCN (g) → 2 CN (g) ΔrH°(0 K) = 134.70 ± 0.56 kcal/molMartin 2006
1.92301.5 NCCN (g) → 2 CN (g) ΔrH°(0 K) = 135.14 ± 0.6 kcal/molFeller 2008
1.43937.1 NCCN (g) + 2 O2 (g) → 2 CO2 (g) N2 (g) ΔrH°(298.15 K) = -261.40 ± 0.20 (×4.269) kcal/molWartenberg 1933, as quoted by Cox 1970
0.92300.4 NCCN (g) → 2 CN (g) ΔrH°(0 K) = 47000 ± 300 cm-1Eres 1984
0.92300.2 NCCN (g) → 2 CN (g) ΔrH°(0 K) = 47100 ± 300 cm-1Wannenmacher 1990
0.64856.6 HCCCCH (g) + 2 HCN (g) → NCCN (g) + 2 HCCH (g) ΔrH°(0 K) = 11.56 ± 1.0 kcal/molRuscic CBS-n

Top 10 species with enthalpies of formation correlated to the ΔfH° of NCCN (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
98.8 CyanogenNCCN (cr,l)N#CC#N274.07289.32± 0.43kJ/mol52.0349 ±
0.0016
460-19-5*500
97.5 Cyanogen cation[NCCN]+ (g)N#C[C+]#N1598.371600.59± 0.44kJ/mol52.0343 ±
0.0016
37354-81-7*0
27.6 Hydrogen cyanideHCN (g)C#N129.661129.277± 0.090kJ/mol27.02538 ±
0.00081
74-90-8*0
27.6 IsocyanogenCNCN (g)[C-]#[N+]C#N411.0413.3± 1.6kJ/mol52.0349 ±
0.0016
83951-85-3*0
27.6 Hydrogen cyanide anion[HCN]- (g)[CH-]#N129.510129.031± 0.090kJ/mol27.02593 ±
0.00081
12334-27-9*0
27.4 NitrilomethylCN (g)[C]#N436.73440.02± 0.15kJ/mol26.01744 ±
0.00080
2074-87-5*0
27.0 Isocyanogen cation[CNCN]+ (g)[C]#[N+]C#N1653.11655.4± 1.6kJ/mol52.0343 ±
0.0016
133415-63-1*0
26.6 Cyanide[CN]- (g)[C-]#N63.95767.243± 0.094kJ/mol26.01799 ±
0.00080
57-12-5*0
24.9 DiisocyanogenCNNC (g)[C-]#[N+][N+]#[C-]610.7613.0± 1.7kJ/mol52.0349 ±
0.0016
78800-21-2*0
18.4 3H-diazirin-3-ylidene-methyleneCC(NN) (g)[C]=C1N=N1837.4839.8± 2.4kJ/mol52.0349 ±
0.0016
204253-88-3*0

Most Influential reactions involving NCCN (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9733933.1 NCCN (g) → [NCCN]+ (g) ΔrH°(0 K) = 13.3705 ± 0.0010 eVHochlaf 2005
0.7653938.1 NCCN (cr,l) → NCCN (g) ΔrH°(252.00 K) = 5.576 ± 0.018 kcal/molRuehrwein 1939
0.2043965.6 NCCN (g) → CC(NN) (g) ΔrH°(0 K) = 126.54 ± 1.2 kcal/molRuscic W1RO
0.2023934.7 [NCCN]- (g) → NCCN (g) ΔrH°(0 K) = 0.271 ± 0.050 eVRuscic W1RO
0.1733965.3 NCCN (g) → CC(NN) (g) ΔrH°(0 K) = 126.17 ± 1.3 kcal/molRuscic G4
0.1733965.5 NCCN (g) → CC(NN) (g) ΔrH°(0 K) = 126.67 ± 1.3 kcal/molRuscic CBS-n
0.1503965.2 NCCN (g) → CC(NN) (g) ΔrH°(0 K) = 127.76 ± 1.4 kcal/molRuscic G3X
0.1353934.3 [NCCN]- (g) → NCCN (g) ΔrH°(0 K) = 0.280 ± 0.061 eVRuscic G4
0.1303965.7 NCCN (g) → CC(NN) (g) ΔrH°(0 K) = 126.00 ± 1.50 kcal/molDing 1998, est unc
0.1253963.6 NCCN (g) → NNCC (g) ΔrH°(0 K) = 84.11 ± 1.2 kcal/molRuscic W1RO
0.1243938.3 NCCN (cr,l) → NCCN (g) ΔrH°(298.15 K) = 4.96 ± 0.02 (×2.229) kcal/molRuehrwein 1939, as quoted by Pedley 1986
0.1143965.4 NCCN (g) → CC(NN) (g) ΔrH°(0 K) = 126.33 ± 1.6 kcal/molRuscic CBS-n
0.1113932.12 NCCN (g) → 2 N (g) + 2 C (g) ΔrH°(0 K) = 491.50 ± 0.30 kcal/molKarton 2008
0.1082251.12 HCN (g) → NCCN (g) H2 (g) ΔrH°(0 K) = 11.51 ± 0.30 kcal/molMartin 2006, Karton 2006
0.1083953.8 NCCN (g) → CNNC (g) ΔrH°(0 K) = 72.85 ± 1.2 kcal/molRuscic W1RO
0.1063963.5 NCCN (g) → NNCC (g) ΔrH°(0 K) = 82.89 ± 1.3 kcal/molRuscic CBS-n
0.1063963.3 NCCN (g) → NNCC (g) ΔrH°(0 K) = 83.37 ± 1.3 kcal/molRuscic G4
0.0993938.2 NCCN (cr,l) → NCCN (g) ΔrH°(252.00 K) = 5.624 ± 0.050 kcal/molRuehrwein 1939
0.0923953.7 NCCN (g) → CNNC (g) ΔrH°(0 K) = 72.19 ± 1.3 kcal/molRuscic CBS-n
0.0923953.4 NCCN (g) → CNNC (g) ΔrH°(0 K) = 72.09 ± 1.3 kcal/molRuscic G4


References (for your convenience, also available in RIS and BibTex format)
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122e of the Thermochemical Network, Argonne National Laboratory (2019); available at ATcT.anl.gov
4   L. Cheng, J. Gauss, B. Ruscic, P. Armentrout, and J. Stanton,
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for Twenty Molecules.
J. Chem. Theory Comput. 13, 1044-1056 (2017) [DOI: 10.1021/acs.jctc.6b00970]
5   J. P. Porterfield, D. H. Bross, B. Ruscic, J. H. Thorpe, T. L. Nguyen, J. H. Baraban, J. F. Stanton, J. W. Daily, and G. B. Ellison,
Thermal Decomposition of Potential Ester Biofuels, Part I: Methyl Acetate and Methyl Butanoate.
J. Chem. Phys. A 121, 4658-4677 (2017) [DOI: 10.1021/acs.jpca.7b02639] (Veronica Vaida Festschrift)
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.