Selected ATcT [1, 2] enthalpy of formation based on version 1.122e of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122d [4] to include chemical species related to methyl acetate and methyl formate [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
ChloromethaneCH3Cl (l)CCl-106.46-102.49± 0.20kJ/mol50.4872 ±
0.0012
74-87-3*590

Top contributors to the provenance of ΔfH° of CH3Cl (l)

The 20 contributors listed below account only for 55.2% of the provenance of ΔfH° of CH3Cl (l).
A total of 272 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
27.14334.1 CH3Br (g) → [CH3]+ (g) Br (g) ΔrH°(0 K) = 12.834 ± 0.002 eVSong 2001
4.94318.1 CH3Cl (g) + 3/2 O2 (g) → CO2 (g) H2O (cr,l) HCl (aq, 600 H2O) ΔrH°(298.15 K) = -764.00 ± 0.50 (×1.682) kJ/molFletcher 1971
3.01888.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
2.6994.1 Cl2 (g) + 2 Br- (aq) → Br2 (cr,l) + 2 Cl- (aq) ΔrH°(298.15 K) = -91.29 ± 0.40 (×1.915) kJ/molJohnson 1963, as quoted by CODATA Key Vals
2.4994.2 Cl2 (g) + 2 Br- (aq) → Br2 (cr,l) + 2 Cl- (aq) ΔrH°(298.15 K) = -91.29 ± 0.80 kJ/molSunner 1964, as quoted by CODATA Key Vals
2.24321.10 CH3Cl (g) H (g) → CH4 (g) Cl (g) ΔrH°(0 K) = -7296 ± 100 cm-1Czako 2012
1.74337.1 CH3Br (g) H2 (g) → CH4 (g) HBr (g) ΔrH°(523.15 K) = -18.062 ± 0.321 kcal/molFowell 1965
1.51004.1 [HBr]+ (g) → H (g) Br+ (g) ΔrH°(0 K) = 31394.5 ± 20 (×2.327) cm-1Haugh 1971, Norling 1935
1.24314.4 CH3Cl (g) → C (g) + 3 H (g) Cl (g) ΔrH°(0 K) = 371.34 ± 0.4 kcal/molFeller 2008
1.04541.1 CH3Cl (g) → CHCl3 (g) + 2 CH4 (g) ΔrH°(0 K) = -2.71 ± 1.2 kcal/molRuscic G3B3
0.9972.1 1/2 H2 (g) + 1/2 Br2 (g) → HBr (g) ΔrH°(376.15 K) = -12.470 ± 0.170 kcal/molLacher 1956a, Lacher 1956
0.74353.1 CH3Br (l) H2 (g) → 2 CH4 (g) Br2 (cr,l) ΔrH°(298.15 K) = -6.60 ± 0.60 kcal/molAdams 1966, as quoted by Cox 1970
0.74510.6 CH4 (g) CH2Cl2 (g) → 2 CH3Cl (g) ΔrH°(0 K) = 0.80 ± 0.9 kcal/molRuscic W1RO
0.74351.2 CH3Br (g) CCl4 (g) → 4 CH3Cl (g) CBr4 (g) ΔrH°(0 K) = 3.39 ± 1.0 kcal/molRuscic G4
0.6966.6 HBr (g) Cl (g) → HCl (g) Br (g) ΔrH°(0 K) = -15.68 ± 0.2 kcal/molFeller 2008
0.6965.12 HBr (g) → H (g) Br (g) ΔrH°(0 K) = 86.47 ± 0.2 kcal/molFeller 2008
0.61090.1 HI (g) Br (g) → HBr (g) I (g) ΔrH°(0 K) = -16.14 ± 0.2 kcal/molFeller 2008
0.61909.7 CH4 (g) → [CH3]+ (g) H (g) ΔrH°(0 K) = 14.321 ± 0.001 eVBodi 2009a
0.6974.1 1/2 H2 (g) + 1/2 Br2 (cr,l) → HBr (aq) ΔrG°(298.15 K) = -102.81 ± 0.80 kJ/molJones 1934, as quoted by CODATA Key Vals
0.64541.2 CH3Cl (g) → CHCl3 (g) + 2 CH4 (g) ΔrH°(0 K) = -3.16 ± 1.2 (×1.325) kcal/molRuscic G3

Top 10 species with enthalpies of formation correlated to the ΔfH° of CH3Cl (l)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
98.5 ChloromethaneCH3Cl (g)CCl-74.66-82.60± 0.20kJ/mol50.4872 ±
0.0012
74-87-3*0
97.8 Chloromethane cation[CH3Cl]+ (g)C[Cl+]1014.621007.85± 0.20kJ/mol50.4867 ±
0.0012
12538-71-5*0
69.9 BromomethaneCH3Br (g)CBr-20.94-36.34± 0.18kJ/mol94.9385 ±
0.0013
74-83-9*0
67.7 Methyl bromide cation[CH3Br]+ (g)C[Br+]996.17981.25± 0.19kJ/mol94.9380 ±
0.0013
12538-70-4*0
65.9 BromomethaneCH3Br (l)CBr-56.66-59.68± 0.19kJ/mol94.9385 ±
0.0013
74-83-9*590
-43.8 Hydrogen bromideHBr (aq, 2000 H2O)Br-120.68± 0.15kJ/mol80.9119 ±
0.0010
10035-10-6*841
-43.8 Hydrogen bromideHBr (aq, 3000 H2O)Br-120.73± 0.15kJ/mol80.9119 ±
0.0010
10035-10-6*842
-43.8 Hydrogen bromideHBr (aq, 2570 H2O)Br-120.72± 0.15kJ/mol80.9119 ±
0.0010
10035-10-6*952
-46.6 Bromoniumyl[HBr]+ (g)[BrH+]1097.691089.84± 0.15kJ/mol80.9114 ±
0.0010
12258-64-9*0
-46.6 Hydrogen bromideHBr (g)Br-27.98-35.83± 0.15kJ/mol80.9119 ±
0.0010
10035-10-6*0

Most Influential reactions involving CH3Cl (l)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.1564330.16 CH3Cl (l) → CH3Cl (g) ΔrG°(243.190 K) = 0.543 ± 0.083 kJ/molGaneff 1948, 3rd Law, ThermoData 2004
0.1564330.10 CH3Cl (l) → CH3Cl (g) ΔrG°(243.750 K) = 0.489 ± 0.083 kJ/molMesserly 1940, 3rd Law, ThermoData 2004
0.1294330.4 CH3Cl (l) → CH3Cl (g) ΔrG°(231.405 K) = 1.626 ± 0.091 kJ/molThermoData 2004, 3rd Law
0.1214330.14 CH3Cl (l) → CH3Cl (g) ΔrG°(273.130 K) = -2.049 ± 0.094 kJ/molGaneff 1948, 3rd Law, ThermoData 2004
0.1214330.12 CH3Cl (l) → CH3Cl (g) ΔrG°(228.426 K) = 1.879 ± 0.094 kJ/molMesserly 1940, 3rd Law, ThermoData 2004
0.0854330.2 CH3Cl (l) → CH3Cl (g) ΔrG°(213.995 K) = 3.202 ± 0.112 kJ/molThermoData 2004, 3rd Law
0.0594330.6 CH3Cl (l) → CH3Cl (g) ΔrG°(299.231 K) = -4.216 ± 0.135 kJ/molThermoData 2004, 3rd Law
0.0544329.7 CH3Cl (l) → CH3Cl (g) ΔrH°(248.945 K) = 21.796 ± 0.14 kJ/molMesserly 1940, ThermoData 2004
0.0544329.6 CH3Cl (l) → CH3Cl (g) ΔrH°(248.955 K) = 21.861 ± 0.14 kJ/molMcGovern 1943, ThermoData 2004
0.0204330.8 CH3Cl (l) → CH3Cl (g) ΔrG°(311.370 K) = -5.194 ± 0.159 (×1.445) kJ/molHsu 1964, 3rd Law, ThermoData 2004
0.0134329.2 CH3Cl (l) → CH3Cl (g) ΔrH°(298.15 K) = 20.18 ± 0.24 (×1.189) kJ/molThermoData 2004
0.0124329.9 CH3Cl (l) → CH3Cl (g) ΔrH°(283.948 K) = 20.181 ± 0.17 (×1.756) kJ/molGriffiths 1932, ThermoData 2004
0.0044329.5 CH3Cl (l) → CH3Cl (g) ΔrH°(298.15 K) = 20.26 ± 0.5 kJ/molManion 2002, Shorthose 1924, est unc
0.0034329.3 CH3Cl (l) → CH3Cl (g) ΔrH°(292.24 K) = 20.71 ± 0.50 (×1.067) kJ/molYates 1926, est unc
0.0024329.1 CH3Cl (l) → CH3Cl (g) ΔrH°(298.15 K) = 20.5 ± 0.3 (×2.044) kJ/molManion 2002
0.0004330.13 CH3Cl (l) → CH3Cl (g) ΔrH°(273.130 K) = 21.348 ± 1.171 kJ/molGaneff 1948, 2nd Law, ThermoData 2004
0.0004330.9 CH3Cl (l) → CH3Cl (g) ΔrH°(243.750 K) = 22.107 ± 1.223 kJ/molMesserly 1940, 2nd Law, ThermoData 2004
0.0004330.15 CH3Cl (l) → CH3Cl (g) ΔrH°(243.190 K) = 22.164 ± 1.235 kJ/molGaneff 1948, 2nd Law, ThermoData 2004
0.0004330.5 CH3Cl (l) → CH3Cl (g) ΔrH°(299.231 K) = 20.123 ± 1.403 kJ/molThermoData 2004, 2nd Law
0.0004330.3 CH3Cl (l) → CH3Cl (g) ΔrH°(231.405 K) = 22.544 ± 1.465 kJ/molThermoData 2004, 2nd Law


References (for your convenience, also available in RIS and BibTex format)
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122e of the Thermochemical Network, Argonne National Laboratory (2019); available at ATcT.anl.gov
4   L. Cheng, J. Gauss, B. Ruscic, P. Armentrout, and J. Stanton,
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for Twenty Molecules.
J. Chem. Theory Comput. 13, 1044-1056 (2017) [DOI: 10.1021/acs.jctc.6b00970]
5   J. P. Porterfield, D. H. Bross, B. Ruscic, J. H. Thorpe, T. L. Nguyen, J. H. Baraban, J. F. Stanton, J. W. Daily, and G. B. Ellison,
Thermal Decomposition of Potential Ester Biofuels, Part I: Methyl Acetate and Methyl Butanoate.
J. Chem. Phys. A 121, 4658-4677 (2017) [DOI: 10.1021/acs.jpca.7b02639] (Veronica Vaida Festschrift)
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.