Selected ATcT [1, 2] enthalpy of formation based on version 1.122e of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122d [4] to include chemical species related to methyl acetate and methyl formate [5].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Ammonium chloride(NH4)Cl (cr)[NH4+].[Cl-]-311.556-314.718± 0.063kJ/mol53.49120 ±
0.00095
12125-02-9*510

Top contributors to the provenance of ΔfH° of (NH4)Cl (cr)

The 20 contributors listed below account only for 87.7% of the provenance of ΔfH° of (NH4)Cl (cr).
A total of 24 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
25.41435.1 NH3 (g) → NH3 (aq, undissoc) ΔrH°(298.15 K) = -8.448 ± 0.015 kcal/molVanderzee 1972
9.31382.1 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g) ΔrH°(298.15 K) = -10.885 ± 0.010 kcal/molLarson 1923, Vanderzee 1972
8.51445.5 (NH4)Cl (cr) → [NH4]+ (aq) Cl- (aq) ΔrG°(298.15 K) = -7.092 ± 0.020 kJ/molCODATA Key Vals
6.31435.2 NH3 (g) → NH3 (aq, undissoc) ΔrH°(298.15 K) = -8.456 ± 0.030 kcal/molStavaley 1971, Vanderzee 1972, as quoted by CODATA Key Vals
6.31435.7 NH3 (g) → NH3 (aq, undissoc) ΔrH°(298.15 K) = -8.456 ± 0.030 kcal/molStaveley 1971, Vanderzee 1972
4.71381.5 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g) ΔrH°(298.15 K) = -10.875 ± 0.014 kcal/molSchulz 1966, Vanderzee 1972
4.41441.1 [NH4]+ (aq) → NH3 (aq, undissoc) H+ (aq) ΔrG°(298.15 K) = 52.771 ± 0.020 kJ/molBates 1950, Bates 1949, Bates 1943, Bates 1946
3.41444.1 N2 (g) + 3 H2O (cr,l) + 2 H+ (aq) → 3/2 O2 (g) + 2 [NH4]+ (aq) ΔrH°(298.15 K) = 141.292 ± 0.119 kcal/molVanderzee 1972c
2.8687.1 HCl (g) → HCl (aq) ΔrH°(298.15 K) = -17.884 ± 0.010 kcal/molGunn 1963, Gunn 1964, as quoted by CODATA Key Vals, Vanderzee 1963
2.21435.3 NH3 (g) → NH3 (aq, undissoc) ΔrH°(298.15 K) = -8.442 ± 0.050 kcal/molThomsen 1873, Vanderzee 1972
1.9687.5 HCl (g) → HCl (aq) ΔrG°(298.15 K) = -36.015 ± 0.050 kJ/molBates 1919, as quoted by CODATA Key Vals
1.9687.4 HCl (g) → HCl (aq) ΔrG°(298.15 K) = -36.009 ± 0.050 kJ/molAston 1955, as quoted by CODATA Key Vals
1.91381.4 1/2 N2 (g) + 3/2 H2 (g) → NH3 (g) ΔrH°(298.15 K) = -10.910 ± 0.015 (×1.445) kcal/molLarson 1924, Vanderzee 1972
1.8689.1 HCl (g) → HCl (aq, 2439 H2O) ΔrH°(298.15 K) = -17.810 ± 0.012 kcal/molVanderzee 1963
1.51443.1 NH3 (g) HON(O)O (aq) → [NH4]+ (aq) [ON(O)O]- (aq) ΔrH°(298.15 K) = -87.23 ± 0.25 (×1.164) kJ/molBecker 1934, Vanderzee 1972a, as quoted by CODATA Key Vals
1.21437.6 (NH4)Cl (cr) → NH3 (g) HCl (g) ΔrH°(298.15 K) = 42.20 ± 0.06 (×1.719) kcal/molBraune 1928, JANAF 3, 3rd Law
0.81440.3 (NH4)NO3 (cr,l) → N2 (g) + 1/2 O2 (g) + 2 H2O (cr,l) ΔrH°(293.65 K) = -49.44 ± 0.06 kcal/molBecker 1934
0.81444.3 N2 (g) + 3 H2O (cr,l) + 2 H+ (aq) → 3/2 O2 (g) + 2 [NH4]+ (aq) ΔrH°(298.15 K) = 141.226 ± 0.239 kcal/molBecker 1934, as quoted by CODATA Key Vals
0.81437.7 (NH4)Cl (cr) → NH3 (g) HCl (g) ΔrH°(298.15 K) = 42.43 ± 0.09 (×1.445) kcal/molRodebush 1929, JANAF 3, 2nd Law
0.7687.3 HCl (g) → HCl (aq) ΔrG°(298.15 K) = -35.960 ± 0.080 kJ/molHaase 1963, as quoted by CODATA Key Vals

Top 10 species with enthalpies of formation correlated to the ΔfH° of (NH4)Cl (cr)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
88.0 Ammonium[NH4]+ (aq)[NH4+]-133.075± 0.056kJ/mol18.03795 ±
0.00029
14798-03-9*800
83.4 AmmoniaNH3 (aq, undissoc)N-80.886± 0.053kJ/mol17.03056 ±
0.00022
7664-41-7*1000
75.8 Ammonium hydroxideNH4OH (aq, undissoc)[NH4+].[OH-]-366.715± 0.062kJ/mol35.04584 ±
0.00047
1336-21-6*1000
43.9 AmmoniaNH3 (g)N-38.565-45.557± 0.030kJ/mol17.03056 ±
0.00022
7664-41-7*0
43.9 Azanylium[NH3]+ (g)[NH3+]944.272937.318± 0.030kJ/mol17.03001 ±
0.00022
19496-55-0*0
34.1 Hydrogen chlorideHCl (aq)Cl-166.991± 0.023kJ/mol36.46064 ±
0.00090
7647-01-0*800
34.1 ChlorideCl- (aq)[Cl-]-166.991± 0.023kJ/mol35.45325 ±
0.00090
16887-00-6*800
32.1 Hydrogen chlorideHCl (aq, 2000 H2O)Cl-166.683± 0.024kJ/mol36.46064 ±
0.00090
7647-01-0*841
32.0 Hydrogen chlorideHCl (aq, 2439 H2O)Cl-166.712± 0.024kJ/mol36.46064 ±
0.00090
7647-01-0*951
32.0 Hydrogen chlorideHCl (aq, 1000 H2O)Cl-166.565± 0.024kJ/mol36.46064 ±
0.00090
7647-01-0*839

Most Influential reactions involving (NH4)Cl (cr)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.9511445.5 (NH4)Cl (cr) → [NH4]+ (aq) Cl- (aq) ΔrG°(298.15 K) = -7.092 ± 0.020 kJ/molCODATA Key Vals
0.0221445.4 (NH4)Cl (cr) → [NH4]+ (aq) Cl- (aq) ΔrH°(298.15 K) = 3.533 ± 0.015 (×2.089) kcal/molParker 1965, as quoted by CODATA Key Vals
0.0161437.6 (NH4)Cl (cr) → NH3 (g) HCl (g) ΔrH°(298.15 K) = 42.20 ± 0.06 (×1.719) kcal/molBraune 1928, JANAF 3, 3rd Law
0.0131445.1 (NH4)Cl (cr) → [NH4]+ (aq) Cl- (aq) ΔrH°(298.15 K) = 3.542 ± 0.005 (×8.175) kcal/molVanderzee 1972a
0.0101437.7 (NH4)Cl (cr) → NH3 (g) HCl (g) ΔrH°(298.15 K) = 42.43 ± 0.09 (×1.445) kcal/molRodebush 1929, JANAF 3, 2nd Law
0.0051438.7 (NH4)Cl (cr) → NH3 (g) HCl (g) ΔrG°(556.8 K) = 21.057 ± 0.618 (×1.215) kJ/molMarkowitz 1962, 3rd Law
0.0051438.4 (NH4)Cl (cr) → NH3 (g) HCl (g) ΔrH°(335 K) = 175.825 ± 0.759 kJ/molWagner 1961, 2nd Law
0.0041437.2 (NH4)Cl (cr) → NH3 (g) HCl (g) ΔrG°(587.4 K) = 3.132 ± 0.028 (×6.874) kcal/molSmith 1914, 3rd Law
0.0031437.3 (NH4)Cl (cr) → NH3 (g) HCl (g) ΔrH°(298.15 K) = 42.16 ± 0.22 kcal/molSmits 1928, JANAF 3, 2nd Law
0.0031437.4 (NH4)Cl (cr) → NH3 (g) HCl (g) ΔrH°(298.15 K) = 42.14 ± 0.22 kcal/molSmits 1928, JANAF 3, 3rd Law
0.0031437.8 (NH4)Cl (cr) → NH3 (g) HCl (g) ΔrH°(298.15 K) = 42.08 ± 0.09 (×2.484) kcal/molRodebush 1929, JANAF 3, 3rd Law
0.0031445.3 (NH4)Cl (cr) → [NH4]+ (aq) Cl- (aq) ΔrH°(298.15 K) = 14.98 ± 0.20 (×1.646) kJ/molMakarov 1967, as quoted by CODATA Key Vals
0.0031445.2 (NH4)Cl (cr) → [NH4]+ (aq) Cl- (aq) ΔrH°(298.15 K) = 14.979 ± 0.080 (×4.177) kJ/molTsvetkov 1969, as quoted by CODATA Key Vals
0.0021437.5 (NH4)Cl (cr) → NH3 (g) HCl (g) ΔrH°(298.15 K) = 42.02 ± 0.06 (×4.757) kcal/molBraune 1928, JANAF 3, 2nd Law
0.0001437.1 (NH4)Cl (cr) → NH3 (g) HCl (g) ΔrH°(587.4 K) = 39.54 ± 0.58 kcal/molSmith 1914, 2nd Law
0.0001438.8 (NH4)Cl (cr) → NH3 (g) HCl (g) ΔrH°(556.8 K) = 162.04 ± 4.28 kJ/molMarkowitz 1962, 2nd Law
0.0001437.9 (NH4)Cl (cr) → NH3 (g) HCl (g) ΔrG°(603 K) = 9.52 ± 5 kJ/molJohnson 1909, 3rd Law, est unc
0.0001437.10 (NH4)Cl (cr) → NH3 (g) HCl (g) ΔrH°(603 K) = 158.7 ± 10 kJ/molJohnson 1909, 2nd Law, est unc
0.0001438.9 (NH4)Cl (cr) → NH3 (g) HCl (g) ΔrH°(798 K) = 40.28 ± 0.5 (×5.076) kcal/molLuft 1955, JANAF 3, est unc


References (for your convenience, also available in RIS and BibTex format)
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122e of the Thermochemical Network, Argonne National Laboratory (2019); available at ATcT.anl.gov
4   L. Cheng, J. Gauss, B. Ruscic, P. Armentrout, and J. Stanton,
Bond Dissociation Energies for Diatomic Molecules Containing 3d Transition Metals: Benchmark Scalar-Relativistic Coupled-Cluster Calculations for Twenty Molecules.
J. Chem. Theory Comput. 13, 1044-1056 (2017) [DOI: 10.1021/acs.jctc.6b00970]
5   J. P. Porterfield, D. H. Bross, B. Ruscic, J. H. Thorpe, T. L. Nguyen, J. H. Baraban, J. F. Stanton, J. W. Daily, and G. B. Ellison,
Thermal Decomposition of Potential Ester Biofuels, Part I: Methyl Acetate and Methyl Butanoate.
J. Chem. Phys. A 121, 4658-4677 (2017) [DOI: 10.1021/acs.jpca.7b02639] (Veronica Vaida Festschrift)
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.