Selected ATcT [1, 2] enthalpy of formation based on version 1.122b of the Thermochemical Network [3]

This version of ATcT results was generated from an expansion of version 1.122 [4][5] to include the best possible isomerization of HCN and HNC [6].

Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
Dihydrogen cation[H2]+ (g)[H][H+]1488.3641488.480± 0.000kJ/mol2.01533 ±
0.00014
12184-90-6*0

Representative Geometry of [H2]+ (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of [H2]+ (g)

The 9 contributors listed below account for 91.6% of the provenance of ΔfH° of [H2]+ (g).

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
28.463.1 H2 (g, para) → H2 (g) ΔrH°(0 K) = 0.0 ± 0.0 cm-1triv
28.465.1 H2 (g, ortho) → [H2]+ (g) ΔrH°(0 K) = 124299.00429 ± 0.00071 cm-1Liu 2009, note unc, Hannemann 2006, Osterwalder 2004, Karr 2008, Korobov 2006, Korobov 2006a, Korobov 2008
19.457.14 H2 (g) → 2 H (g) ΔrH°(0 K) = 36118.0695 ± 0.0020 cm-1Piszczatowski 2009, note unc
3.164.5 H2 (g, para) → H2 (g, ortho) ΔrH°(0 K) = 118.487 ± 0.001 cm-1Schwartz 1987
3.164.6 H2 (g, para) → H2 (g, ortho) ΔrH°(0 K) = 118.48684 ± 0.00020 cm-1Jennings 1984, Liu 2009, note unc
3.164.7 H2 (g, para) → H2 (g, ortho) ΔrH°(0 K) = 118.48680 ± 0.00022 cm-1Piszczatowski 2009, note unc
1.973.7 H (g) → H+ (g) ΔrH°(0 K) = 109678.7717426 ± 0.0000020 cm-1Liu 2009, note unc
1.973.2 H (g) → H+ (g) ΔrH°(0 K) = 109678.771690 ± 0.000006 cm-1Erickson 1977, note std dev
1.973.6 H (g) → H+ (g) ΔrH°(0 K) = 109678.771671 ± 0.000010 cm-1Johnson 1985, note std dev

Top 10 species with enthalpies of formation correlated to the ΔfH° of [H2]+ (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
88.4 HydronH+ (g)[H+]1528.0841530.047± 0.000kJ/mol1.007391 ±
0.000070
12408-02-5*0
68.5 DihydrogenH2 (g, ortho)[H][H]1.4170.019± 0.000kJ/mol2.01588 ±
0.00014
1333-74-0*1
66.0 Dihydrogen cation[H2]+ (g, para)[H][H+]1488.3641488.480± 0.000kJ/mol2.01533 ±
0.00014
12184-90-6*2
64.8 Hydrogen atomH (g)[H]216.034217.998± 0.000kJ/mol1.007940 ±
0.000070
12385-13-6*0
57.7 DihydrogenH2 (g, para)[H][H]-0.000-0.058± 0.000kJ/mol2.01588 ±
0.00014
1333-74-0*2
49.4 Dihydrogen cation[H2]+ (g, ortho)[H][H+]1489.0601488.480± 0.000kJ/mol2.01533 ±
0.00014
12184-90-6*1
36.5 HydrideH- (g)[H-]143.264145.228± 0.000kJ/mol1.008489 ±
0.000070
12184-88-2*0
26.2 Deuterium hydride cation[HD]+ (g)[H][2H+]1490.4981490.587± 0.000kJ/mol3.021493 ±
0.000070
12181-16-7*0
7.8 Deuterium hydrideHD (g)[H][2H]0.3280.319± 0.000kJ/mol3.022042 ±
0.000070
13983-20-5*0

Most Influential reactions involving [H2]+ (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
0.99768.1 [H2]+ (g, para) → [H2]+ (g) ΔrH°(0 K) = 0. ± 0. (×1.414) cm-1Moss 1993b
0.85465.1 H2 (g, ortho) → [H2]+ (g) ΔrH°(0 K) = 124299.00429 ± 0.00071 cm-1Liu 2009, note unc, Hannemann 2006, Osterwalder 2004, Karr 2008, Korobov 2006, Korobov 2006a, Korobov 2008
0.38178.9 [H2]+ (g) → 2 H+ (g) ΔrH°(0 K) = 131058.121975 ± 0.000098 cm-1Liu 2009, note unc, Korobov 2006, Korobov 2006a, Korobov 2008
0.13277.2 [H2]+ (g) → H (g) H+ (g) ΔrH°(0 K) = 21379.3501 ± 0.002 cm-1Moss 1993b, Leach 1995, est unc
0.09578.6 [H2]+ (g) → 2 H+ (g) ΔrH°(0 K) = 131058.1237 ± 0.002 cm-1Taylor 1999a, Moss 1993b, Howells 1990, est unc
0.09578.3 [H2]+ (g) → 2 H+ (g) ΔrH°(0 K) = 131058.1237 ± 0.002 cm-1Bishop 1985, Moss 1993b, Howells 1990, est unc
0.09578.5 [H2]+ (g) → 2 H+ (g) ΔrH°(0 K) = 131058.1237 ± 0.002 cm-1Gremaud 1998, Moss 1993b, Howells 1990, est unc
0.09578.4 [H2]+ (g) → 2 H+ (g) ΔrH°(0 K) = 131058.1216 ± 0.002 cm-1Frolov 1995, Moss 1993b, Howells 1990, est unc
0.09578.7 [H2]+ (g) → 2 H+ (g) ΔrH°(0 K) = 131058.1237 ± 0.002 cm-1Hijikata 2009, Moss 1993b, Howells 1990, est unc
0.01561.11 H2 (g) → [H2]+ (g) ΔrH°(0 K) = 124417.488 ± 0.010 cm-1Meisners 1994, Jungen 1990, de Lange 2002


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.122b of the Thermochemical Network (2016); available at ATcT.anl.gov
4   B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015) [DOI: 10.1021/acs.jpca.5b01346]
5   S. J. Klippenstein, L. B. Harding, and B. Ruscic,
Ab initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species.
J. Phys. Chem. A 121, 6580-6602 (2017) [DOI: 10.1021/acs.jpca.7b05945]
6   T. L. Nguyen, J. H. Baraban, B. Ruscic, and J. F. Stanton,
On the HCN – HNC Energy Difference.
J. Phys. Chem. A 119, 10929-10934 (2015) [DOI: 10.1021/acs.jpca.5b08406]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [7]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.