Selected ATcT [1, 2] enthalpy of formation based on version 1.122 of the Thermochemical Network [3]
This version of ATcT results was partially described in Ruscic et al. [4],
and was also used for the initial development of high-accuracy ANLn composite electronic structure methods [5].
|
Species Name |
Formula |
Image |
ΔfH°(0 K) |
ΔfH°(298.15 K) |
Uncertainty |
Units |
Relative Molecular Mass |
ATcT ID |
Cyclopropynyl | CH(CC) (g) | | 710.7 | 714.8 | ± 1.1 | kJ/mol | 37.0400 ± 0.0024 | 119178-99-3*0 |
|
Representative Geometry of CH(CC) (g) |
|
spin ON spin OFF |
|
Top contributors to the provenance of ΔfH° of CH(CC) (g)The 20 contributors listed below account only for 57.9% of the provenance of ΔfH° of CH(CC) (g). A total of 63 contributors would be needed to account for 90% of the provenance.
Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.
|
Contribution (%) | TN ID | Reaction | Measured Quantity | Reference | 6.4 | 2506.8 | C (g) + HCCH (g) → CH(CC) (g) + H (g)  | ΔrH°(0 K) = -12.90 ± 4 kJ/mol | Aguilera-Iparraguirre 2008, est unc | 5.6 | 2501.1 | CH(CC) (g) → CCCH (g)  | ΔrH°(0 K) = 8.44 ± 3 kJ/mol | Aguilera-Iparraguirre 2008, est unc | 4.1 | 2506.1 | C (g) + HCCH (g) → CH(CC) (g) + H (g)  | ΔrH°(0 K) = -13 ± 5 kJ/mol | Gu 2007 | 3.0 | 2496.5 | CH(CC) (g) → [CCCH]+ (g)  | ΔrH°(0 K) = 9.226 ± 0.040 eV | Ruscic W1RO | 2.9 | 2500.10 | CH(CC) (g) → CCCH (g)  | ΔrH°(0 K) = 1.99 ± 1 kcal/mol | Sancho-Garcia 2002, Wang 2007, Stanton 1995, Ochsenfeld 1997, est unc | 2.9 | 2500.8 | CH(CC) (g) → CCCH (g)  | ΔrH°(0 K) = 678 ± 350 cm-1 | Wang 2007, est unc | 2.8 | 2494.6 | CH(CC) (g) → 3 C (g) + H (g)  | ΔrH°(0 K) = 1637.17 ± 6 kJ/mol | Aguilera-Iparraguirre 2008, est unc | 2.8 | 2506.7 | C (g) + HCCH (g) → CH(CC) (g) + H (g)  | ΔrH°(0 K) = -8.6 ± 6 kJ/mol | Kaiser 1996a, Ochsenfeld 1997, est unc | 2.6 | 2494.5 | CH(CC) (g) → 3 C (g) + H (g)  | ΔrH°(0 K) = 391.93 ± 1.50 kcal/mol | Ruscic W1RO | 2.6 | 2506.6 | C (g) + HCCH (g) → CH(CC) (g) + H (g)  | ΔrH°(0 K) = -3.30 ± 1.50 kcal/mol | Parthiban 2001 | 2.5 | 2499.6 | [CH(CC)]- (g) → 3 C (g) + H (g)  | ΔrH°(0 K) = 438.40 ± 1.50 kcal/mol | Ruscic W1RO | 2.3 | 2494.2 | CH(CC) (g) → 3 C (g) + H (g)  | ΔrH°(0 K) = 392.55 ± 1.60 kcal/mol | Ruscic G4 | 2.2 | 2506.5 | C (g) + HCCH (g) → CH(CC) (g) + H (g)  | ΔrH°(0 K) = -4.12 ± 1.60 kcal/mol | Ruscic CBS-n | 2.2 | 2506.3 | C (g) + HCCH (g) → CH(CC) (g) + H (g)  | ΔrH°(0 K) = -4.01 ± 1.60 kcal/mol | Ruscic G4 | 2.2 | 2499.5 | [CH(CC)]- (g) → 3 C (g) + H (g)  | ΔrH°(0 K) = 437.21 ± 1.60 kcal/mol | Ruscic CBS-n | 2.0 | 2495.5 | CH(CC) (g) → [CH(CC)]+ (g)  | ΔrH°(0 K) = 10.142 ± 0.040 eV | Ruscic W1RO | 2.0 | 2499.2 | [CH(CC)]- (g) → 3 C (g) + H (g)  | ΔrH°(0 K) = 439.61 ± 1.60 (×1.044) kcal/mol | Ruscic G4 | 2.0 | 2500.7 | CH(CC) (g) → CCCH (g)  | ΔrH°(0 K) = 7.1 ± 5 kJ/mol | Kaiser 1996a, Ochsenfeld 1997, est unc | 2.0 | 2500.6 | CH(CC) (g) → CCCH (g)  | ΔrH°(0 K) = 1.88 ± 1.2 kcal/mol | Ruscic W1RO | 1.9 | 2494.1 | CH(CC) (g) → 3 C (g) + H (g)  | ΔrH°(0 K) = 391.27 ± 1.72 kcal/mol | Ruscic G3X |
|
Top 10 species with enthalpies of formation correlated to the ΔfH° of CH(CC) (g) |
Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances. The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.
|
Correlation Coefficent (%) | Species Name | Formula | Image | ΔfH°(0 K) | ΔfH°(298.15 K) | Uncertainty | Units | Relative Molecular Mass | ATcT ID | 96.3 | Cyclopropynyl anion | [CH(CC)]- (g) | | 517.8 | 520.8 | ± 1.1 | kJ/mol | 37.0406 ± 0.0024 | 136861-42-2*0 | 40.1 | 2-Propynylidyne | CCCH (g) | | 717.95 | 722.30 | ± 0.81 | kJ/mol | 37.0400 ± 0.0024 | 53590-28-6*0 | 38.6 | 2-Propynylidyne anion | [CCCH]- (g) | | 539.97 | 544.82 | ± 0.84 | kJ/mol | 37.0406 ± 0.0024 | 82893-67-2*0 | 29.0 | 2-Propyn-1-ylium-1-ylidene | [CCCH]+ (g) | | 1598.0 | 1602.9 | ± 1.3 | kJ/mol | 37.0395 ± 0.0024 | 75104-46-0*0 | 26.2 | Cyclopropenyliumdiyl | [CH(CC)]+ (g) | | 1692.0 | 1694.9 | ± 1.9 | kJ/mol | 37.0395 ± 0.0024 | 127476-05-5*0 | 13.7 | Carbon atom cation | C+ (g) | | 1797.854 | 1803.452 | ± 0.050 | kJ/mol | 12.01015 ± 0.00080 | 14067-05-1*0 | 13.7 | Carbon atom | C (g, singlet) | | 833.332 | 838.478 | ± 0.050 | kJ/mol | 12.01070 ± 0.00080 | 7440-44-0*2 | 13.7 | Carbon atom | C (g, triplet) | | 711.401 | 716.886 | ± 0.050 | kJ/mol | 12.01070 ± 0.00080 | 7440-44-0*1 | 13.7 | Carbon atom | C (g) | | 711.401 | 716.886 | ± 0.050 | kJ/mol | 12.01070 ± 0.00080 | 7440-44-0*0 | 13.6 | Carbon atom anion | C- (g) | | 589.624 | 594.771 | ± 0.050 | kJ/mol | 12.01125 ± 0.00080 | 14337-00-9*0 |
|
Most Influential reactions involving CH(CC) (g)Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.
|
Influence Coefficient | TN ID | Reaction | Measured Quantity | Reference | 0.967 | 2497.1 | [CH(CC)]- (g) → CH(CC) (g)  | ΔrH°(0 K) = 1.999 ± 0.003 eV | Sheehan 2008 | 0.230 | 2495.5 | CH(CC) (g) → [CH(CC)]+ (g)  | ΔrH°(0 K) = 10.142 ± 0.040 eV | Ruscic W1RO | 0.127 | 2496.5 | CH(CC) (g) → [CCCH]+ (g)  | ΔrH°(0 K) = 9.226 ± 0.040 eV | Ruscic W1RO | 0.116 | 2501.1 | CH(CC) (g) → CCCH (g)  | ΔrH°(0 K) = 8.44 ± 3 kJ/mol | Aguilera-Iparraguirre 2008, est unc | 0.069 | 2495.2 | CH(CC) (g) → [CH(CC)]+ (g)  | ΔrH°(0 K) = 10.176 ± 0.073 eV | Ruscic G4 | 0.066 | 2506.8 | C (g) + HCCH (g) → CH(CC) (g) + H (g)  | ΔrH°(0 K) = -12.90 ± 4 kJ/mol | Aguilera-Iparraguirre 2008, est unc | 0.060 | 2500.10 | CH(CC) (g) → CCCH (g)  | ΔrH°(0 K) = 1.99 ± 1 kcal/mol | Sancho-Garcia 2002, Wang 2007, Stanton 1995, Ochsenfeld 1997, est unc | 0.060 | 2500.8 | CH(CC) (g) → CCCH (g)  | ΔrH°(0 K) = 678 ± 350 cm-1 | Wang 2007, est unc | 0.042 | 2495.1 | CH(CC) (g) → [CH(CC)]+ (g)  | ΔrH°(0 K) = 10.169 ± 0.093 eV | Ruscic G3X | 0.042 | 2506.1 | C (g) + HCCH (g) → CH(CC) (g) + H (g)  | ΔrH°(0 K) = -13 ± 5 kJ/mol | Gu 2007 | 0.042 | 2500.7 | CH(CC) (g) → CCCH (g)  | ΔrH°(0 K) = 7.1 ± 5 kJ/mol | Kaiser 1996a, Ochsenfeld 1997, est unc | 0.041 | 2500.6 | CH(CC) (g) → CCCH (g)  | ΔrH°(0 K) = 1.88 ± 1.2 kcal/mol | Ruscic W1RO | 0.038 | 2496.2 | CH(CC) (g) → [CCCH]+ (g)  | ΔrH°(0 K) = 9.199 ± 0.073 eV | Ruscic G4 | 0.037 | 2495.3 | CH(CC) (g) → [CH(CC)]+ (g)  | ΔrH°(0 K) = 10.208 ± 0.099 eV | Ruscic CBS-n | 0.036 | 2496.4 | CH(CC) (g) → [CCCH]+ (g)  | ΔrH°(0 K) = 9.197 ± 0.075 eV | Ruscic CBS-n | 0.035 | 2500.2 | CH(CC) (g) → CCCH (g)  | ΔrH°(0 K) = 2.00 ± 1.3 kcal/mol | Ruscic G4 | 0.029 | 2506.7 | C (g) + HCCH (g) → CH(CC) (g) + H (g)  | ΔrH°(0 K) = -8.6 ± 6 kJ/mol | Kaiser 1996a, Ochsenfeld 1997, est unc | 0.029 | 2494.6 | CH(CC) (g) → 3 C (g) + H (g)  | ΔrH°(0 K) = 1637.17 ± 6 kJ/mol | Aguilera-Iparraguirre 2008, est unc | 0.026 | 2506.6 | C (g) + HCCH (g) → CH(CC) (g) + H (g)  | ΔrH°(0 K) = -3.30 ± 1.50 kcal/mol | Parthiban 2001 | 0.026 | 2494.5 | CH(CC) (g) → 3 C (g) + H (g)  | ΔrH°(0 K) = 391.93 ± 1.50 kcal/mol | Ruscic W1RO |
|
|
References
|
1
|
|
B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004)
[DOI: 10.1021/jp047912y]
|
2
|
|
B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005)
[DOI: 10.1088/1742-6596/16/1/078]
|
3
|
|
B. Ruscic and D. H. Bross, Active Thermochemical Tables (ATcT) values based on ver. 1.122 of the Thermochemical Network (2016); available at ATcT.anl.gov |
4
|
|
B. Ruscic,
Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol and the Related Thermochemistry.
J. Phys. Chem. A 119, 7810-7837 (2015)
[DOI: 10.1021/acs.jpca.5b01346]
|
5
|
|
S. J. Klippenstein, L. B. Harding, and B. Ruscic,
Ab initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species.
J. Phys. Chem. A 121, 6580-6602 (2017)
[DOI: 10.1021/acs.jpca.7b05945]
|
6
|
|
B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014)
[DOI: 10.1002/qua.24605]
|
|
|
Formula
|
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.
|
|
Uncertainties
|
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.
|
|
Website Functionality Credits
|
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.
|
|
Acknowledgement
|
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.
|