Selected ATcT [1, 2] enthalpy of formation based on version 1.118 of the Thermochemical Network [3]

This version of ATcT results was partially described in Ruscic et al. [4], and was also used for the initial development of high-accuracy ANLn composite electronic structure methods [5].

Species Name Formula    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
EthyleneC2H4 (g)61.0552.53± 0.14kJ/mol28.0532 ±
0.0016
74-85-1*0

Top contributors to the provenance of ΔfH° of C2H4 (g)

The 20 contributors listed below account only for 57.0% of the provenance of ΔfH° of C2H4 (g).
A total of 340 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The listed Reaction acts as a link to the relevant references for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
Reaction Measured Quantity
16.1 C2H4 (g) + 3 O2 (g) → 2 CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -1411.18 ± 0.30 kJ/mol
6.1 C2H4 (g) + H2 (g) → C2H6 (g) ΔrH°(298.15 K) = -32.58 ± 0.05 kcal/mol
6.0 C2H6 (g) + 7/2 O2 (g) → 2 CO2 (g) + 3 H2O (cr,l) ΔrH°(298.15 K) = -373.01 ± 0.06 kcal/mol
3.3 1/2 O2 (g) + H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/mol
2.3 CH3CH2Cl (g) + 3 O2 (g) → 2 CO2 (g) + HCl (aq, 600 H2O) + 2 H2O (cr,l) ΔrH°(298.15 K) = -337.73 ± 0.14 (×1.269) kcal/mol
2.2 2 C2H4 (g) → HCCH (g) + C2H6 (g) ΔrH°(0 K) = 9.26 ± 0.20 kcal/mol
2.1 CO (g) → C+ (g) + O (g) ΔrH°(0 K) = 22.3713 ± 0.0015 eV
2.1 CH3CH2CH3 (g) + CH4 (g) → 2 C2H6 (g) ΔrH°(0 K) = 3.06 ± 0.15 kcal/mol
2.0 CH2CCH2 (g) + CH4 (g) → 2 C2H4 (g) ΔrH°(0 K) = -2.24 ± 0.25 kcal/mol
1.8 2 H2 (g) + C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/mol
1.6 C2H4 (g) → 2 C (g) + 4 H (g) ΔrH°(0 K) = 2226.23 ± 0.70 kJ/mol
1.4 2 C2H4 (g) → HCCH (g) + C2H6 (g) ΔrH°(0 K) = 9.23 ± 0.25 kcal/mol
1.4 2 C2H4 (g) → HCCH (g) + C2H6 (g) ΔrH°(0 K) = 9.23 ± 0.25 kcal/mol
1.4 C2H4 (g) → [HCCH]+ (g) + H2 (g) ΔrH°(0 K) = 13.135 ± 0.005 eV
1.4 C2H4 (g) → [HCCH]+ (g) + H2 (g) ΔrH°(0 K) = 13.135 ± 0.005 eV
1.3 CH2CCH2 (g) + CH4 (g) → 2 C2H4 (g) ΔrH°(0 K) = -2.38 ± 0.3 kcal/mol
1.1 C2H4 (g) → 2 C (g) + 4 H (g) ΔrH°(0 K) = 532.06 ± 0.20 kcal/mol
1.1 HCCH (g) + H2 (g) → C2H4 (g) ΔrH°(0 K) = -167.71 ± 0.70 kJ/mol
0.8 C (graphite) + O2 (g) → CO2 (g) ΔrH°(298.15 K) = -393.464 ± 0.024 kJ/mol
0.7 HCCH (g) + H2 (g) → C2H4 (g) ΔrH°(0 K) = -40.12 ± 0.20 kcal/mol


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic, Active Thermochemical Tables (ATcT) values based on ver. 1.118 of the Thermochemical Network (2015); available at ATcT.anl.gov
4   B. Ruscic,
Active Thermochemical Tables: Dissociation Energies of Several Homonuclear First-Row Diatomics and Related Thermochemical Values.
Theor. Chem. Acc. 133, 1415/1-12 (2005) [DOI: 10.1007/s00214-013-1415-z]
5   S. J. Klippenstein, L. B. Harding, and B. Ruscic,
Ab initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species.
J. Phys. Chem. A in preparation (2016)
6   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.