Selected ATcT [1, 2] enthalpy of formation based on version 1.130 of the Thermochemical Network [3]

This version of ATcT results[4] was generated by additional expansion of version 1.128 [5,6] to include with the calculations provided in reference [4].

Hydrogen peroxide

Formula: HOOH (g)
CAS RN: 7722-84-1
ATcT ID: 7722-84-1*0
SMILES: OO
InChI: InChI=1S/H2O2/c1-2/h1-2H
InChIKey: MHAJPDPJQMAIIY-UHFFFAOYSA-N
Hills Formula: H2O2

2D Image:

OO
Aliases: Hydrogen peroxide; Dioxidane; Dihydrogen peroxide; Hydrogen dioxide; Dihydrogen dioxide; Albone; Oxydol; Perhydrol; Superoxol; HOOH; H2O2
Relative Molecular Mass: 34.01468 ± 0.00062

   ΔfH°(0 K)   ΔfH°(298.15 K)UncertaintyUnits
-129.417-135.403± 0.058kJ/mol

3D Image of HOOH (g)

spin ON           spin OFF
          

Top contributors to the provenance of ΔfH° of HOOH (g)

The 20 contributors listed below account only for 76.2% of the provenance of ΔfH° of HOOH (g).
A total of 132 contributors would be needed to account for 90% of the provenance.

Please note: The list is limited to 20 most important contributors or, if less, a number sufficient to account for 90% of the provenance. The Reference acts as a further link to the relevant references and notes for the measurement. The Measured Quantity is normaly given in the original units; in cases where we have reinterpreted the original measurement, the listed value may differ from that given by the authors. The quoted uncertainty is the a priori uncertainty used as input when constructing the initial Thermochemical Network, and corresponds either to the value proposed by the original authors or to our estimate; if an additional multiplier is given in parentheses immediately after the prior uncertainty, it corresponds to the factor by which the prior uncertainty needed to be multiplied during the ATcT analysis in order to make that particular measurement consistent with the prevailing knowledge contained in the Thermochemical Network.

Contribution
(%)
TN
ID
Reaction Measured Quantity Reference
37.2240.1 HOOH (g) → 2 OH (g) ΔrH°(0 K) = 17051.8 ± 3.4 cm-1Luo 1992
16.0121.2 1/2 O2 (g) H2 (g) → H2O (cr,l) ΔrH°(298.15 K) = -285.8261 ± 0.040 kJ/molRossini 1939, Rossini 1931, Rossini 1931b, note H2Oa, Rossini 1930
4.72277.7 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -890.578 ± 0.078 kJ/molSchley 2010
4.42279.1 H2 (g) C (graphite) → CH4 (g) ΔrG°(1165 K) = 37.521 ± 0.068 kJ/molSmith 1946, note COf, 3rd Law
1.8236.3 HOOH (cr,l) → H2O (cr,l) + 1/2 O2 (g) ΔrH°(293.15 K) = -23.48 ± 0.03 (×2.229) kcal/molRoth 1930, est unc
1.3236.4 HOOH (cr,l) → H2O (cr,l) + 1/2 O2 (g) ΔrH°(293.15 K) = -23.47 ± 0.02 (×3.83) kcal/molMatheson 1929, est unc
1.1111.11 H2O (g) → O (g) + 2 H (g) ΔrH°(0 K) = 917.80 ± 0.15 kJ/molThorpe 2021
1.0153.1 OH (g) → [OH]+ (g) ΔrH°(0 K) = 104989 ± 5 (×2.278) cm-1Wiedmann 1992, note unc
1.0221.4 HOOH (g) → 2 H (g) + 2 O (g) ΔrH°(0 K) = 1054.84 ± 0.56 kJ/molHarding 2008
0.9163.6 H2O (g) → [OH]+ (g) H (g) ΔrH°(0 K) = 18.1183 ± 0.0015 (×1.022) eVBodi 2014
0.7148.1 OH (g) → O (g) H (g) ΔrH°(0 K) = 35580 ± 15 cm-1Sun 2020
0.71702.1 N2 (g) + 3 H2O (cr,l) + 2 H+ (aq) → 3/2 O2 (g) + 2 [NH4]+ (aq) ΔrH°(298.15 K) = 141.292 ± 0.119 kcal/molVanderzee 1972c
0.7236.1 HOOH (cr,l) → H2O (cr,l) + 1/2 O2 (g) ΔrH°(300.05 K) = -23.44 ± 0.02 (×5.301) kcal/molGiguere 1955
0.6165.1 [OH]- (g) → O- (g) H (g) ΔrH°(0 K) = 4.7796 ± 0.0010 (×2.044) eVMartin 2001, est unc
0.6221.2 HOOH (g) → 2 H (g) + 2 O (g) ΔrH°(0 K) = 1055.04 ± 0.70 kJ/molHarding 2008
0.62277.4 CH4 (g) + 2 O2 (g) → CO2 (g) + 2 H2O (cr,l) ΔrH°(298.15 K) = -890.61 ± 0.21 kJ/molDale 2002
0.5221.3 HOOH (g) → 2 H (g) + 2 O (g) ΔrH°(0 K) = 1054.64 ± 0.74 kJ/molHarding 2008
0.5221.1 HOOH (g) → 2 H (g) + 2 O (g) ΔrH°(0 K) = 1054.81 ± 0.75 kJ/molTajti 2004, est unc
0.5163.7 H2O (g) → [OH]+ (g) H (g) ΔrH°(0 K) = 18.1190 ± 0.002 eVBodi 2014
0.52172.11 CO (g) → C (g) O (g) ΔrH°(0 K) = 1071.92 ± 0.10 (×1.215) kJ/molThorpe 2021

Top 10 species with enthalpies of formation correlated to the ΔfH° of HOOH (g)

Please note: The correlation coefficients are obtained by renormalizing the off-diagonal elements of the covariance matrix by the corresponding variances.
The correlation coefficient is a number from -1 to 1, with 1 representing perfectly correlated species, -1 representing perfectly anti-correlated species, and 0 representing perfectly uncorrelated species.


Correlation
Coefficent
(%)
Species Name Formula Image    ΔfH°(0 K)    ΔfH°(298.15 K) Uncertainty Units Relative
Molecular
Mass
ATcT ID
100.0 Hydrogen peroxideHOOH (g, para)OO-129.417-135.403± 0.058kJ/mol34.01468 ±
0.00062
7722-84-1*2
100.0 Hydrogen peroxideHOOH (g, ortho)OO-129.397-135.403± 0.058kJ/mol34.01468 ±
0.00062
7722-84-1*1
73.0 HydroxylOH (g)[OH]37.27937.518± 0.022kJ/mol17.00734 ±
0.00031
3352-57-6*0
73.0 Hydroxyde[OH]- (g)[OH-]-139.063-139.030± 0.022kJ/mol17.00789 ±
0.00031
14280-30-9*0
72.9 WaterH2O (l)O-285.800± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*590
72.9 WaterH2O (l, eq.press.)O-285.801± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*589
72.9 WaterH2O (g, ortho)O-238.617-241.805± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*1
72.9 WaterH2O (g, para)O-238.902-241.805± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*2
72.9 WaterH2O (g)O-238.902-241.805± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*0
72.9 WaterH2O (cr, l, eq.press.)O-286.274-285.801± 0.022kJ/mol18.01528 ±
0.00033
7732-18-5*499

Most Influential reactions involving HOOH (g)

Please note: The list, which is based on a hat (projection) matrix analysis, is limited to no more than 20 largest influences.

Influence
Coefficient
TN
ID
Reaction Measured Quantity Reference
1.000228.1 HOOH (g, para) → HOOH (g) ΔrH°(0 K) = 0 ± 0 cm-1triv, Hougen 1984
0.917240.1 HOOH (g) → 2 OH (g) ΔrH°(0 K) = 17051.8 ± 3.4 cm-1Luo 1992
0.556237.9 HOOH (cr,l) → HOOH (g) ΔrH°(298.15 K) = 51.925 ± 0.073 kJ/molScatchard 1952, 3rd Law, apud Gurvich TPIS
0.420222.4 HOOH (g) → [HOOH]+ (g, trans) ΔrH°(0 K) = 10.642 ± 0.008 eVSchio 2016, Changala 2017
0.4052073.6 HOONO (g, trans, perp) H2O (g) → HONO (g, trans) HOOH (g) ΔrH°(0 K) = 6.93 ± 0.15 kcal/molMcGrath 2005
0.2521874.1 NH2OH (g, trans) H2O (g) → HOOH (g) NH3 (g) ΔrH°(0 K) = 24.9 ± 0.2 kcal/molFeller 2003, est unc
0.247423.6 (HOO)2 (g, triplet) → HOOH (g) O2 (g) ΔrH°(0 K) = -121.15 ± 1.0 kJ/molSprague 2015, note unc2
0.2451016.7 ClOOCl (g) + 2 HOCl (g) → HOOH (g) + 2 ClOCl (g) ΔrH°(0 K) = 10.44 ± 0.30 kcal/molKarton 2009c
0.2441054.4 HOOCl (g) → HOOH (g) ClOOCl (g) ΔrH°(0 K) = -0.35 ± 0.9 kcal/molRuscic W1RO
0.1981054.2 HOOCl (g) → HOOH (g) ClOOCl (g) ΔrH°(0 K) = -0.55 ± 1.0 kcal/molRuscic G4
0.189414.6 HOOOOH (g, C1) → HOOH (g) O2 (g) ΔrH°(0 K) = -96.25 ± 1.0 kJ/molSprague 2015, note unc2
0.186222.6 HOOH (g) → [HOOH]+ (g, trans) ΔrH°(0 K) = 10.638 ± 0.012 eVChangala 2017, Litorja 1998a
0.186223.9 HOOH (g) → [HOOH]+ (g, trans) ΔrH°(0 K) = 10.638 ± 0.012 eVChangala 2017, est unc
0.1631054.1 HOOCl (g) → HOOH (g) ClOOCl (g) ΔrH°(0 K) = -0.72 ± 1.1 kcal/molRuscic G3X
0.154706.9 FOOF (g) + 2 OH (g) → HOOH (g) + 2 FO (g) ΔrH°(0 K) = -4.55 ± 0.25 kcal/molKarton 2009c
0.153416.7 HOOOOH (g, C1) HOOH (g) → 2 HOOOH (g, trans) ΔrH°(0 K) = -0.48 ± 2.0 kJ/molKlippenstein 2017
0.148707.9 FOOF (g) H2O (g) → HOOH (g) FOF (g) ΔrH°(0 K) = 23.92 ± 0.25 kcal/molKarton 2009c
0.1411015.7 ClOOCl (g) H2O (g) → ClOCl (g) HOOH (g) ΔrH°(0 K) = 13.27 ± 0.30 kcal/molKarton 2009c
0.140416.6 HOOOOH (g, C1) HOOH (g) → 2 HOOOH (g, trans) ΔrH°(0 K) = 0.08 ± 0.50 kcal/molDenis 2009, Denis 2009, est unc
0.1381016.6 ClOOCl (g) + 2 HOCl (g) → HOOH (g) + 2 ClOCl (g) ΔrH°(0 K) = 10.43 ± 0.40 kcal/molKarton 2009c


References
1   B. Ruscic, R. E. Pinzon, M. L. Morton, G. von Laszewski, S. Bittner, S. G. Nijsure, K. A. Amin, M. Minkoff, and A. F. Wagner,
Introduction to Active Thermochemical Tables: Several "Key" Enthalpies of Formation Revisited.
J. Phys. Chem. A 108, 9979-9997 (2004) [DOI: 10.1021/jp047912y]
2   B. Ruscic, R. E. Pinzon, G. von Laszewski, D. Kodeboyina, A. Burcat, D. Leahy, D. Montoya, and A. F. Wagner,
Active Thermochemical Tables: Thermochemistry for the 21st Century.
J. Phys. Conf. Ser. 16, 561-570 (2005) [DOI: 10.1088/1742-6596/16/1/078]
3   B. Ruscic and D. H. Bross,
Active Thermochemical Tables (ATcT) values based on ver. 1.130 of the Thermochemical Network. Argonne National Laboratory, Lemont, Illinois 2023; available at ATcT.anl.gov
[DOI: 10.17038/CSE/1997229]
4   N. Genossar, P. B. Changala, B. Gans, J.-C. Loison, S. Hartweg, M.-A. Martin-Drumel, G. A. Garcia, J. F. Stanton, B. Ruscic, and J. H. Baraban
Ring-Opening Dynamics of the Cyclopropyl Radical and Cation: the Transition State Nature of the Cyclopropyl Cation
J. Am. Chem. Soc. 144, 18518-18525 (2022) [DOI: 10.1021/jacs.2c07740]
5   B. Ruscic and D. H. Bross
Active Thermochemical Tables: The Thermophysical and Thermochemical Properties of Methyl, CH3, and Methylene, CH2, Corrected for Nonrigid Rotor and Anharmonic Oscillator Effects.
Mol. Phys. e1969046 (2021) [DOI: 10.1080/00268976.2021.1969046]
6   J. H. Thorpe, J. L. Kilburn, D. Feller, P. B. Changala, D. H. Bross, B. Ruscic, and J. F. Stanton,
Elaborated Thermochemical Treatment of HF, CO, N2, and H2O: Insight into HEAT and Its Extensions
J. Chem. Phys. 155, 184109 (2021) [DOI: 10.1063/5.0069322]
7   B. Ruscic,
Uncertainty Quantification in Thermochemistry, Benchmarking Electronic Structure Computations, and Active Thermochemical Tables.
Int. J. Quantum Chem. 114, 1097-1101 (2014) [DOI: 10.1002/qua.24605]
8   B. Ruscic and D. H. Bross,
Thermochemistry
Computer Aided Chem. Eng. 45, 3-114 (2019) [DOI: 10.1016/B978-0-444-64087-1.00001-2]

Formula
The aggregate state is given in parentheses following the formula, such as: g - gas-phase, cr - crystal, l - liquid, etc.

Uncertainties
The listed uncertainties correspond to estimated 95% confidence limits, as customary in thermochemistry (see, for example, Ruscic [6]).
Note that an uncertainty of ± 0.000 kJ/mol indicates that the estimated uncertainty is < ± 0.0005 kJ/mol.

Website Functionality Credits
The reorganization of the website was developed and implemented by David H. Bross (ANL).
The find function is based on the complete Species Dictionary entries for the appropriate version of the ATcT TN.
The molecule images are rendered by Indigo-depict.
The XYZ renderings are based on Jmol: an open-source Java viewer for chemical structures in 3D. http://www.jmol.org/.

Acknowledgement
This work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences under Contract No. DE-AC02-06CH11357.